Lactating mammary glands fixed by perfusion with 5% glutaraldehyde subsequently were postfixed with potassium ferrocyanide reduced osmium or were treated with tannic acid. Stained thin sections were examined with the electron microscope and stereopairs were prepared. The distribution of casein submicelles was analyzed in the various components of the Golgi apparatus. The Golgi stacks were composed of five or six elements, all of which contained casein submicelles 20 nm in diameter. The cis-tubular network or cis-element, as well as the underlying three or four midsaccules, showed these casein submicelles either attached to their membrane or free in the lumen. The trans-most element of the stacks formed distended prosecretory granules in which both isolated or clustered casein submicelles were suspended in an electron-lucent fluid. These micellar aggregates increased in size and became progressively more compact to form spherical dense bodies or casein micelles, in which the individual 20 nm particles could easily be resolved. Casein micelles were seen in secretory granules in addition to a wispy material of low density. The numerous small spherical vesicles (80 nm or larger) seen on the cis, lateral, or trans aspects of the stacks did not appear to contain free casein submicelles. This raises questions regarding the role of these vesicles in the transport of casein macromolecules through the Golgi stacks. It was noticeable that in this Golgi apparatus a trans-Golgi network was limited to a few small residual tubules free from casein submicelles. It thus appears that the greater part of the trans-most Golgi element gives rise to the large prosecretory granules. After leaving the Golgi region and prior to exocytosis, the secretory granules often fuse to form larger granules before exocytosis.
The structural features of the Golgi apparatus of acinar cells of mammary glands were examined with the electron microscope in 3 groups of rats: (1) in lactating female animals at 8 days postpartum, which served as controls; (2) in female rats sacrificed at various intervals from 2 to 30 hours following separation from their 8-day old pups; and (3) in females separated from their 8-day-old pups for a period of 12 hours and returned to their litters for durations of 1, 2, 4, and 8 hours. In animals of group 2, the Golgi stacks remained identical to that of controls between 2 and 8 hours. At 12 hours and later, the Golgi stacks decreased progressively in size, but the number of elements composing the stacks remained similar to that of lactating females and all contained casein submicelles. At 24 and 30 hours, typical secretory granules containing casein micelles disappeared from the trans aspect of the stacks. The earliest and most striking changes observed in the Golgi apparatus of the rats of group 2 took place at 12 hours. At this time, the prosecretory and secretory granules decreased considerably in volume and lost most of their electron-lucent content. This indicated that the delivery of small molecules, i.e., lactose and H2O, to these structures was soon altered following arrest of the sucking stimulus. In animals of group 3, the size of prosecretory and secretory granules and the amount of their electron-lucent content reverted to normal at 4 hours. Thus the influx of lactose and H2O into these structures appears to be rapidly restored after returning the pups to their mothers. The decrease in size of the Golgi stacks noted at 12, 18, and 24 hours following arrest of lactation (group 2), was accompanied by an increase in number of small vesicles that formed clusters next to the Golgi stacks and in "wells." Thus in these regressing Golgi stacks, many of the associated small vesicles appear to arise by vesiculation of the saccules.
The endoplasmic reticulum (ER) of rooster's spermatids was analyzed during spermiogenesis, which was subdivided into eight distinct steps on the basis of changes observed with the electron microscope in the nucleus, acrosome-perforatorium system, manchette, and flagellum. In steps 1 and 2, spermatids' ER cisternae presented the following specializations: A loose network of tubular cisternae was distributed throughout the cytoplasm. Six to eight tight networks of anastomosed tubular cisternae parallel to each other were closely stacked to form a discoid body (1.5-2.5 microns in diameter and 0.5-0.8-micron thick) in which spheroidal vesicles (0.4 micron in diameter) were inserted. Close to and connected with this body, called the alveolar body, there was a stack of annulate lamellae. Large, flattened ER cisternae were seen singly or in piles of two or three running parallel to the nuclear surface. A collection of tubular ER cisternae faced plaques of thickened plasma membranes. These elements of the ER system appear continuous with each other. During steps 3-5 of spermiogenesis, no modification of the alveolar body-annulate lamellae complex was noted; the large flattened ER cisternae disappeared, however, and the broad network of tubular cisternae developed markedly. During steps 6 and 7, the latter network of tubular cisternae fragmented into vesicles that swelled to give a vacuolated appearance to the cytoplasm. The alveolar body-annulate lamellae complex remained visible until late step 7, when it disintegrated just before spermiation. Thus the system of ER cisternae underwent marked structural modifications during spermiogenesis.
The function of neutrophils within the mammary gland was modeled in vitro to include diapedesis and phagocytosis. The bovine mammary cell line, MAC-T3, provided a mammary epithelial monolayer for use as a biologically meaningful barrier to neutrophil diapedesis. Features included characteristic transepithelial resistance, tight junctional complexes, and polarity. Continuous readings of transepithelial resistance indicated a stable resistance over several hours. Staphylococcus aureus, at concentrations of 1 x 10(7) and 2 x 10(9) cfu/ml, did not appear to have any deleterious effects on monolayer integrity over short-term (1 to 2 h) exposure. Neither resting nor challenged neutrophils caused short-term damage to the monolayer. Transepithelial resistance of the monolayers remained unchanged even as neutrophils were actively migrating through the monolayer. Further work using the MAC-T3 cell line and electrical resistance to assess cell monolayer integrity could provide much insight into the mechanisms underlying degeneration of mammary epithelial cells. The ability of neutrophils to phagocytose foreign particles is important for protection of the mammary gland. Neutrophils from proven bulls varied in their rate and capacity of phagocytosis. Correlations between neutrophil function and production traits were negative and small. In vitro analysis of neutrophil function provides another tool for the study of natural mastitis resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.