Aims: Avermectins are major antiparasitic agents used commercially in animal health, agriculture and human infections. To improve the fermentation efficiency of avermectins, for the first time a plasma jet generated by a novel atmospheric pressure glow discharge (APGD) was employed to generate mutations in Streptomyces avermitilis.
Methods and Results: The APGD plasma jet, driven by a radio frequency (RF) power supply with water‐cooled and bare‐metallic electrodes, was used as a new mutation method to treat the spores of S. avermitilis. The plasma jet yielded high total (over 30%) and positive (about 21%) mutation rates on S. avermitilis, and a mutated strain, designated as G1‐1 with high productivity of avermectin B1a and genetic stability, was obtained.
Conclusions: Because of the low jet temperature, the high concentrations of the chemically reactive species and the flexibility of its operation, the RF APGD plasma jet has a strong mutagenic effect on S. avermitilis.
Significance and Impact of the Study: This is a proof‐of‐concept study for the use of an RF APGD plasma jet for inducing mutations in microbes. We have shown that the RF APGD plasma jet could be developed as a promising and convenient mutation tool for the fermentation industry and for use in biotechnology research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.