When solving linear algebraic equations with large and sparse coefficient matrices, arising, for instance, from the discretization of partial differential equations, it is quite common to use preconditioning to accelerate the convergence of a basic iterative scheme. Incomplete factorizations and sparse approximate inverses can provide efficient preconditioning methods but their existence and convergence theory is based mostly on M-matrices (H-matrices). In some application areas, however, the arising coefficient matrices are not Hmatrices. This is the case, for instance, when higher-order finite element approximations are used, which is typical for structural mechanics problems. We show that modification of a symmetric, positive definite matrix by reduction of positive offdiagonal entries and diagonal compensation of them leads to an M-matrix. This diagonally compensated reduction can take place in the whole matrix or only at the current pivot block in a recursive incomplete factorization method. Applications for constructing preconditioning matrices for finite element matrices are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.