The introduction of novel drugs into treatment must be accompanied by continuous phenotypic susceptibility testing and the analysis of genetic determinants of resistance.
Our study shows that the eis promoter region is a useful molecular marker of kanamycin resistance in the Moscow region. Complex analysis of rrs and eis mutations will significantly reduce the time to diagnose kanamycin resistance in TB patients, compared with phenotypic drug resistance testing.
BackgroundThe steady rise in the spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) requires rapid and reliable methods to identify resistant strains. The current molecular methods to detect MTB resistance to second-line drugs either do not cover an extended spectrum of mutations to be identified or are not easily implemented in clinical laboratories. A rapid molecular technique for the detection of resistance to second-line drugs in M. tuberculosis has been developed using hybridisation analysis on microarrays.MethodsThe method allows the identification of mutations within the gyrA and gyrB genes responsible for fluoroquinolones resistance and mutations within the rrs gene and the eis promoter region associated with the resistance to injectable aminoglycosides and a cyclic peptide, capreomycin. The method was tested on 65 M. tuberculosis clinical isolates with different resistance spectra that were characterised by their resistance to ofloxacin, levofloxacin, moxifloxacin, kanamycin and capreomycin. Also, a total of 61 clinical specimens of various origin (e.g., sputum, bronchioalveolar lavage) were tested.ResultsThe sensitivity and specificity of the method in the detection of resistance to fluoroquinolones were 98% and 100%, respectively, 97% and 94% for kanamycin, and 100% and 94% for capreomycin. The analytical sensitivity of the method was approximately 300 genome copies per assay. The diagnostic sensitivity of the assay ranging from 67% to 100%, depending on the smear grade, and the method is preferable for analysis of smear-positive specimens.ConclusionsThe combined use of the developed microarray test and the previously described microarray-based test for the detection of rifampin and isoniazid resistance allows the simultaneous identification of the causative agents of MDR and XDR and the detection of their resistance profiles in a single day.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.