There has been a recent surge of research output on magnetophoretic lab-on-a-chip systems due to their prospective use in a range of applications in the life sciences and clinical diagnostics. Manifold applications for batchmode or continuous-flow magnetophoretic separations of cells, proteins, and nucleic acids are found in bioanalytics, cell biology, and clinical diagnostics. To ensure stable hydrodynamic conditions and thus reproducible separation, state-of-the-art magnetophoretic lab-on-a-chip systems have been based on pressure-driven flow (Gijs in Microfluid
The measurement of ‘dark current’ in pressurized SF6 at high electric field is performed using electrodes with a coaxial geometry. To identify the main mechanisms involved in measured currents, the influences of electrode roughness, gas pressure and relative humidity have been investigated. The experimental results reveal that charge injection from the electrode constitute the predominant process responsible for the dark current. The latter is nearly identical in positive and negative polarities, and shows an exponential increase versus the relative humidity and the electric field. The analysis of results shows that under high electric field, the emission of charged water clusters from the water films adsorbed on electrodes probably constitutes the main mechanism of charge emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.