Hepatitis C virus (HCV) infection presents an unmet medical need requiring more effective treatment options. Nucleoside inhibitors (NI) of HCV polymerase (NS5B) have demonstrated pan-genotypic activity and durable antiviral response in the clinic, and they are likely to become a key component of future treatment regimens. NI candidates that have entered clinical development thus far have all been N-nucleoside derivatives. Herein, we report the discovery of a C-nucleoside class of NS5B inhibitors. Exploration of adenosine analogs in this class identified 1'-cyano-2'-C-methyl 4-aza-7,9-dideaza adenosine as a potent and selective inhibitor of NS5B. A monophosphate prodrug approach afforded a series of compounds showing submicromolar activity in HCV replicon assays. Further pharmacokinetic optimization for sufficient oral absorption and liver triphosphate loading led to identification of a clinical development candidate GS-6620. In a phase I clinical study, the potential for potent activity was demonstrated but with high intra- and interpatient pharmacokinetic and pharmacodynamic variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.