Kallikrein-related peptidases (KLKs) are a family of secreted serine proteases, which form a network, the KLK activome, with an important role in proteolysis and signaling. In prostate cancer (PCa), increased KLK activity promotes tumor growth and metastasis through multiple biochemical pathways, and specific quantification and tracking of changes in the KLK activome could contribute to validation of KLKs as potential drug targets. Herein we report a technology platform based on novel activity-based probes (ABPs) and inhibitors with unprecedented potency and selectivity enabling simultaneous orthogonal analysis of KLK2, KLK3 and KLK14 activity in hormone-responsive PCa cell lines and tumor homogenates. Using selective inhibitors and multiplexed fluorescent activity-based protein profiling (ABPP) we dissect the KLK activome in PCa cells and show that increased KLK14 activity leads to a migratory phenotype. Furthermore, using biotinylated ABPs we show that active KLK molecules are secreted into the bone microenvironment by PCa cells following stimulation by osteoblasts suggesting KLK-mediated signaling mechanisms could contribute to PCa metastasis to bone. Together our findings show that ABPP is a powerful approach to dissect dysregulation of the KLK activome as a promising and previously underappreciated therapeutic target in advanced PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.