Gliomas are highly malignant brain tumors that are highly invasive and resistant to conventional therapy. Receptor tyrosine kinases (RTKs) such as PDGFRα (platelet-derived growth factor receptor-α), which show frequent aberrant activation in gliomas, are associated with a process of epithelial–mesenchymal transition (EMT), a cellular alteration that confers a more invasive and drug-resistant phenotype. Although this phenomenon is well documented in human cancers, the processes by which RTKs including PDGFRα mediate EMT are largely unknown. Here, we report that SHP-2 (encoded by PTPN11) upregulates an EMT inducer, ZEB1, to mediate PDGFRα-driven glioma EMT, invasion and growth in glioma cell lines and patient-derived glioma stem cells (GSCs) using cell culture and orthotopic xenograft models. ZEB1 and activated PDGFRα were coexpressed in invasive regions of mouse glioma xenografts and clinical glioma specimens. Glioma patients with high levels of both phospho-PDGFRα (p-PDGFRα) and ZEB1 had significantly shorter overall survival compared with those with low expression of p-PDGFRα and ZEB1. Knockdown of ZEB1 inhibited PDGFA/PDGFRα-stimulated glioma EMT, tumor growth and invasion in glioma cell lines and patient-derived GSCs. PDGFRα mutant deficient of SHP2 binding (PDGFRα-F720) or phosphoinositide 3-kinase (PI3K) binding (PDGFRα-F731/42), knockdown of SHP2 or treatments of pharmacological inhibitor for PDGFRα-signaling effectors attenuated PDGFA/PDGFRα-stimulated ZEB1 expression, cell migration and GSC proliferation. Importantly, SHP-2 acts together with PI3K/AKT to regulate a ZEB1-miR-200 feedback loop in PDGFRα-driven gliomas. Taken together, our findings uncover a new pathway in which ZEB1 functions as a key regulator for PDGFRα-driven glioma EMT, invasiveness and growth, suggesting that ZEB1 is a promising therapeutic target for treating gliomas with high PDGFRα activation.
The homozygous p.V37I variant of GJB2 is frequent in East Asians and has been reported to have a pathogenic role in mild-to-moderate hearing impairment (HI). In this study, we investigated the prevalence and phenotypic spectrum of homozygous p.V37I in three Chinese Han cohorts with severe-to-profound HI (n = 857, Cohort S), mild-to-moderate HI (n = 88, Cohort M) and normal hearing (n = 1550, Cohort N). Sequencing of GJB2 showed that homozygous p.V37I was detected in 1.63% (14/857), 12.5% (11/88) and 0.32% (5/1550) of subjects in Cohorts S, M and N, respectively. It was strongly associated with both mild-to-moderate (p = 2.0 × 10(-11) ) and severe-to-profound (p = 0.001) HI, but was estimated to have a rather low penetrance (17%). Among the hearing impaired subjects with homozygous p.V37I, the onset of HI was congenital in 65% (11/17) and delayed in 35% (6/17). By targeted next-generation sequencing of 79 known deafness genes, we identified an additional homozygous pathogenic mutation of CDH23 in 1 of 14 p.V37I homozygous subjects from Cohort S. Our study suggested that homozygous p.V37I is associated with a broader spectrum of hearing phenotypes than previously revealed. Data presented in this study can be effectively applied to clinical evaluation and genetic counseling of people carrying this variant.
Thymine DNA glycosylase (TDG) recognizes the geometry alteration of DNA minor grooves induced by 5-formylcytosine (5fC) in DNA demethylation pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.