Abstract. The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from partrough, part-smooth transitional elements of the endoplasmic reticulum (TER). Vesicle budding from the TER is an ATP-dependent process both in vivo and in vitro. An ATPase with a monomer molecular weight of 100 kD by SDS-PAGE has been isolated from TER and designated as TER ATPase. The native TER ATPase has been characterized as a hexamer of six 100-kD subunits by gel filtration. The protein catalyzes the hydrolysis of [732-P]ATP and is phosphorylated in the presence of Mg 2÷. It is distinct from the classical transport ATPases based on pH optima, ion effects, and inhibitor specificity. Electron microscopy of negatively stained preparations revealed the TER ATPase to be a ring-shaped structure with sixfold rotational symmetry. A 19-amino acid sequence of TER ATPase having 84 % identity with valosincontaining protein and 64% identity with a yeast cellcycle control protein CDC48p was obtained. Antisynthetic peptide antisera to a 15-amino acid portion of the sequence of TER ATPase recognized a 100-kD protein from TER. These antisera reduced the ATPdependent cell-free formation of transition vesicles from isolated TER of rat liver. In a reconstituted membrane transfer system, TER ATPase antisera inhibited transfer of radiolabeled material from endoplasmic reticulum to Golgi apparatus, while preimmune sera did not. The results suggest that the TER ATPase is obligatorily involved in the ATP requirements for budding of transition vesicles from the TER. cDNA clones encoding TER ATPase were isolated by immunoscreening a rat liver cDNA library with the afffinity-purified TER ATPase antibody. A computer search of deduced amino acid sequences revealed the cloned TER ATPase to be the rat equivalent of porcine valosin-containing protein, a member of a novel family of ATP binding, homo-oligomeric proteins including the N-ethylmaleimide-sensitive fusion protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.