The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis (dcw) gene cluster. Here, we present the discovery of a cell wall enzyme that can substitute for MurG. A mutant of Kitasatospora viridifaciens lacking a significant part of the dcw cluster, including murG, surprisingly produced lipid II and wild-type peptidoglycan. Genomic analysis identified a distant murG homologue, which encodes a putative enzyme that shares only around 31% amino acid sequence identity with MurG. We show that this enzyme can replace the canonical MurG, and we therefore designated it MglA. Orthologues of mglA are present in 38% of all genomes of Kitasatospora and members of the sister genus Streptomyces. CRISPR interference experiments showed that K. viridifaciens mglA can also functionally replace murG in Streptomyces coelicolor, thus validating its bioactivity and demonstrating that it is active in multiple genera. All together, these results identify MglA as a bona fide lipid II synthase, thus demonstrating plasticity in cell wall synthesis. IMPORTANCE Almost all bacteria are surrounded by a cell wall, which protects cells from environmental harm. Formation of the cell wall requires the precursor molecule lipid II, which in bacteria is universally synthesized by the conserved and essential lipid II synthase MurG. We here exploit the unique ability of an actinobacterial strain capable of growing with or without its cell wall to discover an alternative lipid II synthase, MglA. Although this enzyme bears only weak sequence similarity to MurG, it can functionally replace MurG and can even do so in organisms that naturally have only a canonical MurG. The observation that MglA proteins are found in many actinobacteria highlights the plasticity in cell wall synthesis in these bacteria and demonstrates that important new cell wall biosynthetic enzymes remain to be discovered.
Bacterial cytokinesis starts with the polymerization of the tubulin-like FtsZ, which forms the cell division scaffold. SepF aligns FtsZ polymers and also acts as a membrane anchor for the Z-ring. While in most bacteria cell division takes place at midcell, during sporulation of Streptomyces many septa are laid down almost simultaneously in multinucleoid aerial hyphae. The genomes of streptomycetes encode two additional SepF paralogs, SflA and SflB, which can interact with SepF. Here we show that the sporogenic aerial hyphae of sflA and sflB mutants of Streptomyces coelicolor frequently branch, a phenomenon never seen in the wild-type strain. The branching coincided with ectopic localization of DivIVA along the lateral wall of sporulating aerial hyphae. Constitutive expression of SflA and SflB largely inhibited hyphal growth, further correlating SflAB activity to that of DivIVA. SflAB localized in foci prior to and after the time of sporulation-specific cell division, while SepF co-localized with active septum synthesis. Foci of FtsZ and DivIVA frequently persisted between adjacent spores in spore chains of sflA and sflB mutants, at sites occupied by SflAB in wild-type cells. This may be caused by the persistance of SepF multimers in the absence of SflAB. Taken together, our data show that SflA and SflB play an important role in the control of growth and cell division during Streptomyces development.
The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule Lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis (dcw) gene cluster. Here we present the discovery of a novel cell wall enzyme that can substitute for MurG. A mutant of Kitasatospora viridifaciens lacking a significant part of the dcw cluster including murG surprisingly produced Lipid II and wild-type peptidoglycan. Genomic analysis identified a distant murG paralogue, which encodes a putative enzyme that shares only around 31% aa sequence identity with MurG. We show that this enzyme can replace the canonical MurG, and we therefore designated it MurG2. Orthologues of murG2 are present in 38% of all genomes of Kitasatosporae and members of the sister genus Streptomyces. CRISPRi experiments showed that K. viridifaciens murG2 can also functionally replace murG in Streptomyces coelicolor, thus validating its bioactivity and demonstrating that it is active in multiple genera. Altogether, these results identify MurG2 as a bona fide Lipid II synthase, thus demonstrating plasticity in cell wall synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.