By introducing Ag nanoclusters (NCs), ZnO-based resistive switching memory devices offer improved performance, including improved uniformity of switching parameters, and increased switching speed with excellent reliability. These Ag NCs are formed between the top-electrode (cathode) and the switching layer by an electromigration process in the initial several switching cycles. The electric field can be enhanced around Ag NCs due to their high surface curvature. The enhanced local-electric-field (LEF) results in (1) the localization of the switching site near Ag NCs, where oxygen-vacancy-based conducting filaments have a simple structure, and tend to connect Ag NCs along the LEF direction; (2) an increase in migration and recombination rates of oxygen ions and oxygen vacancies. These factors are responsible for the improvement in device performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.