We report on the first results from a new microwave cavity search for dark matter axions with masses above 20 μeV. We exclude axion models with two-photon coupling g_{aγγ}≳2×10^{-14} GeV^{-1} over the range 23.55
We report on the results from a search for dark matter axions with the HAYSTAC experiment using a microwave cavity detector at frequencies between 5.6 and 5.8 GHz. We exclude axion models with two photon coupling g aγγ ≳ 2 × 10 −14 GeV −1 , a factor of 2.7 above the benchmark KSVZ model over the mass range 23.15 < m a < 24.0 μeV. This doubles the range reported in our previous paper. We achieve a nearquantum-limited sensitivity by operating at a temperature T < hν=2k B and incorporating a Josephson parametric amplifier (JPA), with improvements in the cooling of the cavity further reducing the experiment's system noise temperature to only twice the standard quantum limit at its operational frequency, an order of magnitude better than any other dark matter microwave cavity experiment to date. This result concludes the first phase of the HAYSTAC program utilizing a conventional copper cavity and a single JPA.
Path entanglement constitutes an essential resource in quantum information and communication protocols. Here, we demonstrate frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two spatially separated paths. We combine a squeezed and a vacuum state using a microwave beam splitter. Via correlation measurements, we detect and quantify the path entanglement contained in the beam splitter output state. Our experiments open the avenue to quantum teleportation, quantum communication, or quantum radar with continuous variables at microwave frequencies.
Josephson parametric amplifiers (JPA) are promising devices for applications in circuit quantum electrodynamics and for studies on propagating quantum microwaves because of their good noise performance. In this work, we present a systematic characterization of a flux-driven JPA at millikelvin temperatures. In particular, we study in detail its squeezing properties by 9 These authors contributed equally to this work.
We describe in detail the analysis procedure used to derive the first limits from the Haloscope at Yale Sensitive to Axion CDM (HAYSTAC), a microwave cavity search for cold dark matter (CDM) axions with masses above 20 µeV. We have introduced several significant innovations to the axion search analysis pioneered by the Axion Dark Matter eXperiment (ADMX), including optimal filtering of the individual power spectra that constitute the axion search dataset and a consistent maximum likelihood procedure for combining and rebinning these spectra. These innovations enable us to obtain the axion-photon coupling |gγ| excluded at any desired confidence level directly from the statistics of the combined data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.