The research sought to investigate the surface roughness parameter (Zo) and wind shear exponent (α) of Kisii region (elevation 1710m above sea level, 0.68°S, 34.79°E). A six-month experiment was set at three sites of Kisii region. Two PRO AcuRite 01036 Wireless Weather Stations with pro+ 5-in-1 Sensors were placed at different hub heights above the ground and data were sent and received by a display board set at a room through remote sensing at an interval of 12 minutes. Data was collected from the display board through the pc connect software, grouped into discrete data and then calculated to represent mean wind speed, diurnal variation, daily variation, and monthly variations. The calculated averages of wind speeds at hub heights of 10m and 13m were then used to determine the wind shear exponent and surface roughness parameter of the sites. The wind shear exponents were found to be 0.92, 0.41, and 0.54 for Nyamecheo, Kisii University, and Ikobe stations, respectively, with an average of 0.64. The roughness parameter was also calculated and found to be 3.75, 1.32, and 1.96 for Nyamecheo, Kisii University (KSU), and Ikobe, respectively, with an average of 2.35.
Background. Global warming is a growing threat in the world today mainly due to the emission of CO2 caused by the burning of fossil fuel. Consequently, countries are being forced to seek potential alternative sources of energy such as wind, solar, and photovoltaic among many others. However, the realization of their benefits is faced with challenges. Though wind stands a chance to solve this problem, the lack of adequate site profiles, long-term behavioural information, and specific data information that enables informed choice on site selection, turbine selection, and expected power output has remained a challenge to its exploitation. In this research, Weibull and Rayleigh models are adopted. Wind speeds were analyzed and characterized in the short term and then simulated for a long-term measured hourly series data of daily wind speeds at a height of 10 m. The analysis included daily wind data which was grouped into discrete data and then calculated to represent the mean wind speed, diurnal variations, daily variations, and monthly variations. To verify the models, statistical tools of Chi square, RMSE, MBE, and correlational coefficient were applied. Also, the method of measure, correlate, and predict was adopted to check for the reliability of the data used. The wind speed frequency distribution at the height of 10 m was found to be 2.9 ms-1 with a standard deviation of 1.5. From the six months’ experiments, averages of wind speeds at hub heights of 10 m were calculated and found to be 1.7 m/s, 2.4 m/s, and 1.3 m/s, for Ikobe, Kisii University, and Nyamecheo stations, respectively. The wind power density of the region was found to be 29 W/m2. By a narrow margin, Rayleigh proves to be a better method over Weibull in predicting wind power density in the region. Wind speeds at the site are noted to be decreasing over the years. The region is shown as marginal on extrapolation to 30 m for wind energy generation hence adequate for nongrid connected electrical and mechanical applications. The strong correlation between the site wind profiles proves data reliability. The gradual decrease of wind power over the years calls for attention.
The research sought to investigate the long term characteristics of wind in the Kisii region (elevation 1710m above sea level, 0.68oS, 34.79o E). Wind speeds were analyzed and characterized on short term (per month for a year) and then simulated for long term (ten years) measured hourly series data of daily wind speeds at a height of 10m. The analysis included daily wind data which was grouped into discrete data and then calculated to represent; the mean wind speed, diurnal variations, daily variations as well as the monthly variations. The wind speed frequency distribution at the height 10 m was found to be 2.9ms-1 with a standard deviation of 1.5. Based on the two month’s data that was extracted from the AcuRite 01024 Wireless Weather Stations with 5-in-1 Weather Sensor experiments set at three sites in the region, averages of wind speeds at hub heights of 10m and 13m were calculated and found to be 1.7m/s, 2.0m/s for Ikobe station, 2.4m/s, 2.8m/s for Kisii University stations, and 1.3m/s, 1.6m/s for Nyamecheo station respectively. Then extrapolation was done to determine average wind speeds at heights (20m, 30m, 50m, and 70m) which were found to be 85.55W/m2, 181.75W/m2, 470.4W/m2 and 879.9W/m2 respectively. The wind speed data was used statistically to model a Weibull probability density function and used to determine the power density for Kisii region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.