The ability of nanoparticles to penetrate the stratum corneum was the focus of several studies. Yet, there are controversial issues available for particle penetration due to different experimental setups. Meanwhile, there is little known about the mechanism and determinants of their penetration. In this paper the penetration of four model gold nanoparticles of diameter 6 and 15 nm, differing in surface polarity and the nature of the vehicle, through human skin was studied using multiphoton microscopy. This is in an attempt to profoundly investigate the parameters governing particle penetration through human skin. Our results imply that nanoparticles at this size range permeate the stratum corneum in a similar manner to drug molecules, mainly through the intercellular pathways. However, due to their particulate nature, permeation is also dependent on the complex microstructure of the stratum corneum with its tortuous aqueous and lipidic channels, as shown from our experiments performed using skin of different grades of barrier integrity. The vehicle (toluene-versus-water) had a minimal effect on skin penetration of gold nanoparticles. Other considerations in setting up a penetration experiment for nanoparticles were also studied. The results obtained are important for designing a new transdermal carrier and for a basic understanding of skin-nanoparticle interaction.
Miltefosine (MFS) is an alkylphosphocholine used for the local treatment of cutaneous metastases of breast cancer and oral therapy of visceral leishmaniasis. Recently, the drug was reported in in vitro and preclinical studies to exert significant activity against different developmental stages of schistosomiasis mansoni, a widespread chronic neglected tropical disease (NTD). This justified MFS repurposing as a potential antischistosomal drug. However, five consecutive daily 20 mg/kg doses were needed for the treatment of schistosomiasis mansoni in mice. The present study aims at enhancing MFS efficacy to allow for a single 20mg/kg oral dose therapy using a nanotechnological approach based on lipid nanocapsules (LNCs) as oral nanovectors. MFS was incorporated in LNCs both as membrane-active structural alkylphospholipid component and active antischistosomal agent. MFS-LNC formulations showed high entrapment efficiency (EE%), good colloidal properties, sustained release pattern and physical stability. Further, LNCs generally decreased MFS-induced erythrocyte hemolytic activity used as surrogate indicator of membrane activity. While MFS-free LNCs exerted no antischistosomal effect, statistically significant enhancement was observed with all MFS-LNC formulations. A maximum effect was achieved with MFS-LNCs incorporating CTAB as positive charge imparting agent or oleic acid as membrane permeabilizer. Reduction of worm load, ameliorated liver pathology and extensive damage of the worm tegument provided evidence for formulation-related efficacy enhancement. Non-compartmental analysis of pharmacokinetic data obtained in rats indicated independence of antischistosomal activity on systemic drug exposure, suggesting possible gut uptake of the stable LNCs and targeting of the fluke tegument which was verified by SEM. The study findings put forward MFS-LNCs as unique oral nanovectors combining the bioactivity of MFS and biopharmaceutical advantages of LNCs, allowing targeting via the oral route. From a clinical point of view, data suggest MFS-LNCs as a potential single dose oral nanomedicine for enhanced therapy of schistosomiasis mansoni and possibly other diseases.
PurposeLipid nanocapsules (LNCs) have shown potential to increase the bioavailability and efficacy of orally administered drugs. However, their intestinal translocation to distal target sites and their implication in pharmacokinetic (PK)–pharmacodynamic (PD) relationships are yet to be elucidated. In this study, the effect of LNCs on the PD activity and pharmacokinetics of praziquantel (PZQ), the mainstay of schistosomiasis chemotherapy, was investigated.Materials and methodsThe composition of LNCs was modified to increase PZQ payload and to enhance membrane permeability. PZQ–LNCs were characterized in vitro for colloidal properties, entrapment efficiency (EE%), and drug release. PD activity of the test formulations was assessed in Schistosoma mansoni-infected mice 7 days post-oral administration of a single 250 mg/kg oral dose. Pharmacokinetics of the test formulations and their stability in simulated gastrointestinal (GI) fluids were investigated to substantiate in vivo data.ResultsPZQ–LNCs exhibited good pharmaceutical attributes in terms of size (46–62 nm), polydispersity index (0.01–0.08), EE% (>95%), and sustained release profiles. Results indicated significant efficacy enhancement by reduction in worm burden, amelioration of liver pathology, and extensive damage to the fluke suckers and tegument. This was partly explained by PK data determined in rats. In addition, oral targeting of the worms was supported by the stability of PZQ–LNCs in simulated GI fluids and scanning electron microscopy (SEM) visualization of nanostructures on the tegument of worms recovered from mesenteric/hepatic veins. Cytotoxicity data indicated tolerability of PZQ–LNCs.ConclusionData obtained provide evidence for the ability of oral LNCs to target distal post-absorption sites, leading to enhanced drug efficacy. From a practical standpoint, PZQ–LNCs could be suggested as a potential tolerable single lower dose oral nanomedicine for more effective PZQ mass chemotherapy.
Gold nanoparticles, 15 nm, in aqueous solution aggregated on the skin surface. Toluene treatment eliminated skin metabolism; skin treated with toluene/gold nanoparticles (6 nm) for 24 h, but not at 4 h, showed increased nanoparticle permeability. These results are of value to nanotoxicology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.