Coronavirus disease (COVID-19) is a pandemic infectious disease that has a severe risk of spreading rapidly. The quick identification and isolation of the affected persons is the very first step to fight against this virus. In this regard, chest radiology images have been proven to be an effective screening approach of COVID-19 affected patients. A number of AI based solutions have been developed to make the screening of radiological images faster and more accurate in detecting COVID-19. In this study, we are proposing a deep learning based approach using Densenet-121 to effectively detect COVID-19 patients. We incorporated transfer learning technique to leverage the information regarding radiology image learned by another model (CheXNet) which was trained on a huge Radiology dataset of 112,120 images. We trained and tested our model on COVIDx dataset containing 13,800 chest radiography images across 13,725 patients. To check the robustness of our model, we performed both two-class and three-class classifications and achieved 96.49% and 93.71% accuracy respectively. To further validate the consistency of our performance, we performed patient-wise k-fold cross-validation and achieved an average accuracy of 92.91% for three class task. Moreover, we performed an interpretability analysis using Grad-CAM to highlight the most important image regions in making a prediction. Besides ensuring trustworthiness, this explainability can also provide new insights about the critical factors regarding COVID-19. Finally, we developed a website that takes chest radiology images as input and generates probabilities of the presence of COVID-19 or pneumonia and a heatmap highlighting the probable infected regions. Code and models' weights are availabe.
COVID-19 has a severe risk of spreading rapidly, the quick identification of which is essential. In this regard, chest radiology images have proven to be a practical screening approach for COVID-19 affected patients. This study proposes a deep learning-based approach using Densenet-121 to detect COVID-19 patients effectively. We have trained and tested our model on the COVIDx dataset and performed both 2-class and 3-class classification, achieving 96.49% and 93.71% accuracy, respectively. By successfully utilizing transfer learning, we achieve comparable performance to the state-of-the-art method while using 15x fewer model parameters. Moreover, we performed an interpretability analysis using Grad-CAM to highlight the most significant image regions at test time. Finally, we developed a website that takes chest radiology images as input and detects the presence of COVID-19 or pneumonia and a heatmap highlighting the infected regions. Source code for reproducing results and model weights are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.