Molybdenum oxide is used as a low-resistance anode interfacial layer in applications such as organic light emitting diodes and organic photovoltaics. However, little is known about the correlation between its stoichiometry and electronic properties, such as work function and occupied gap states. In addition, despite the fact that the knowledge of the exact oxide stoichiometry is of paramount importance, few studies have appeared in the literature discussing how this stoichiometry can be controlled to permit the desirable modification of the oxide's electronic structure. This work aims to investigate the beneficial role of hydrogenation (the incorporation of hydrogen within the oxide lattice) versus oxygen vacancy formation in tuning the electronic structure of molybdenum oxides while maintaining their high work function. A large improvement in the operational characteristics of both polymer light emitting devices and bulk heterojunction solar cells incorporating hydrogenated Mo oxides as hole injection/extraction layers was achieved as a result of favorable energy level alignment at the metal oxide/organic interface and enhanced charge transport through the formation of a large density of gap states near the Fermi level.
High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement.
Here, we report on the dual functionality of tungsten oxide for application as an efficient electron and hole injection/transport layer in organic light‐emitting diodes (OLEDs). We demonstrate hybrid polymer light‐emitting diodes (Hy‐PLEDs), based on a polyfluorene copolymer, by inserting a very thin layer of a partially reduced tungsten oxide, WO2.5, at the polymer/Al cathode interface to serve as an electron injection and transport layer. Significantly improved current densities, luminances, and luminous efficiencies were achieved, primarily as a result of improved electron injection at the interface with Al and transport to the lowest unoccupied molecular orbital (LUMO) of the polymer, with a corresponding lowering of the device driving voltage. Using a combination of optical absorption, ultraviolet spectoscopy, X‐ray photoelectron spectroscopy, and photovoltaic open circuit voltage measurements, we demonstrate that partial reduction of the WO3 to WO2.5 results in the appearance of new gap states just below the conduction band edge in the previously forbidden gap. The new gap states are proposed to act as a reservoir of donor electrons for enhanced injection and transport to the polymer LUMO and decrease the effective cathode workfunction. Moreover, when a thin tungsten oxide film in its fully oxidized state (WO3) is inserted at the ITO anode/polymer interface, further improvement in device characteristics was achieved. Since both fully oxidized and partially reduced tungsten oxide layers can be deposited in the same chamber with well controlled morphology, this work paves the way for the facile fabrication of efficient and stable Hy‐OLEDs with excellent reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.