The cell nucleus is a primary target for intracellular bacterial pathogens to counteract immune responses and hijack host signalling pathways to cause disease. The mechanisms controlling nuclear protein localisation in the context of stress responses induced upon bacterial infection are still poorly understood. Here we show that theBrucella abortuseffectors NyxA and NyxB interfere with the host sentrin specific protease 3 (SENP3), which is essential for intracellular replication. Translocated Nyx effectors directly interact with SENP3viaa defined acidic patch identified from the crystal structure of NyxB, preventing its nucleolar localisation at the late stages of the infection. By sequestering SENP3, the Nyx effectors induce the cytoplasmic accumulation of the nucleolar AAA-ATPase NVL, the large subunit ribosomal protein L5 (RPL5) and the ribophagy receptor NUFIP1 in Nyx-enriched structures in the vicinity of replicating bacteria. This shuttling of ribosomal biogenesis-associated nucleolar proteins is negatively regulated by SENP3 and dependent on the autophagy-initiation protein Beclin1, indicative of a ribophagy-derived process induced duringBrucellainfection. Our results highlight a new nucleomodulatory function by two uniqueBrucellaeffectors, and reveal that SENP3 is a critical regulator of the subcellular localisation of multiple nucleolar proteins duringBrucellainfection, promoting intracellular replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.