There has been an increasing body of evidence that flow hydrogenation enhances reduction outcomes across a wide range of synthetic transformations. Moreover flow reactors enhance laboratory safety with pyrophoric catalysts contained in sealed cartridges and hydrogen generated in situ from water. This mini-review focuses on recent applications of flow chemistry to mediate nitro, imine, nitrile, amide, azide, and azo reductions. Methodologies to effect de-aromatisation, hydrodehalogenation, in addition to olefin, alkyne, carbonyl, and benzyl reductions are also examined. Further, protocols to effect chemoselective reductions and enantioselective reductions are highlighted. Together these applications demonstrate the numerous advantages of performing hydrogenation under flow conditions which include enhanced reaction throughput, yields, simplified workup, and the potential applicability to multistep and cascade synthetic protocols.
Suzuki cross-couplings of 5-formyl-2-furanylboronic acid with activated or neutral aryl bromides were performed under continuous flow conditions in the presence of (Bu)4N(+)F(-) and the immobilised t-butyl based palladium catalyst CatCart™ FC1032™. Deactivated aryl bromides and activated aryl chlorides were cross-coupled with 5-formyl-2-furanylboronic in the presence of (Bu)4N(+)OAc(-) using the bis-triphenylphosphine CatCart™ PdCl2(PPh3)2-DVB. Initial evidence indicates the latter method may serve as a universal approach to conduct Suzuki cross-couplings with the protocol successfully employed in the synthesis of the current gold standard Hedgehog pathway inhibitor LDE225.
Rapid access to the quinolin-2-(1H)-one scaffold is afforded by a sequential 4 component Ugi–Knoevenagel condensation of an aminophenylketone, an aromatic aldehyde possessing electron donating moieties, cyanoacetic acid and an aliphatic isocyanide, in moderate to good yields (49–71%). Interestingly, when the reaction is performed using aromatic aldehydes bearing electron withdrawing moieties or isocyanides containing aromatic or ester units, a mixture of a quinolin-2-(1H)-one and an α-amino amide (Ugi three-component adduct) is afforded in varying ratios. Further when the reaction is performed utilizing a combination of an isocyanide-containing aromatic or carbonyl unit, and an aldehyde possessing an electron withdrawing functionality, the Ugi three-component adduct is exclusively afforded. In our hands this new variation of the Ugi 3CR proved to be efficient and robust affording analogues in good yields (51–70%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.