The evolutionary history of Southern Hemisphere graylings (Retropinnidae) in New Zealand (NZ), including their relationship to the Australian grayling, is poorly understood. The NZ grayling (Prototroctes oxyrhynchus) is the only known fish in NZ to have gone extinct since human arrival there. Despite its historical abundance, only 23 wet and dried, formalin-fixed specimens exist in museums. We used high-throughput DNA sequencing to generate mitogenomes from formalin-fixed P. oxyrhynchus specimens, and analysed these in a temporal phylogenetic framework of retropinnids and osmerids. We recovered a strong sister-relationship between NZ and Australian grayling (P. mareana), with a common ancestor ~13.8 Mya [95% highest posterior density (HPD): 6.1–23.2 Mya], after the height of Oligocene marine inundation in NZ. Our temporal phylogenetic analysis suggests a single marine dispersal between NZ and Australia, although the direction of dispersal is equivocal, followed by divergence into genetically and morphologically distinguishable species through isolation by distance. This study provides further insights into the possible extinction drivers of the NZ grayling, informs discussion regarding reintroduction of Prototroctes to NZ and highlights how advances in palaeogenetics can be used to test evolutionary hypotheses in fish, which, until relatively recently, have been comparatively neglected in ancient-DNA research.
New Zealand’s diplodactylid geckos exhibit high species-level diversity, largely independent of discernible osteological changes. Consequently, systematic affinities of isolated skeletal elements (fossils) are primarily determined by comparisons of size, particularly in the identification of Hoplodactylus duvaucelii, New Zealand’s largest extant gecko species. Here, three-dimensional geometric morphometrics of maxillae (a common fossilized element) was used to determine whether consistent shape and size differences exist between genera, and if cryptic extinctions have occurred in subfossil ‘Hoplodactylus cf. duvaucelii’. Sampling included 13 diplodactylid species from five genera, and 11 Holocene subfossil ‘H. cf. duvaucelii’ individuals. We found phylogenetic history was the most important predictor of maxilla morphology among extant diplodactylid genera. Size comparisons could only differentiate Hoplodactylus from other genera, with the remaining genera exhibiting variable degrees of overlap. Six subfossils were positively identified as H. duvaucelii, confirming their proposed Holocene distribution throughout New Zealand. Conversely, five subfossils showed no clear affinities with any modern diplodactylid genera, implying either increased morphological diversity in mainland ‘H. cf. duvaucelii’ or the presence of at least one extinct, large, broad-toed diplodactylid species.
Methodological and technological improvements are continually revolutionizing the field of ancient DNA. Most ancient DNA extraction methods require the partial (or complete) destruction of finite museum specimens, which disproportionately impacts small or fragmentary subfossil remains, and future analyses. We present a minimally destructive ancient DNA extraction method optimized for small vertebrate remains. We applied this method to detect lost mainland genetic diversity in the large New Zealand diplodactylid gecko genus Hoplodactylus, which is presently restricted to predator‐free island and mainland sanctuaries. We present the first mitochondrial genomes for New Zealand diplodactylid geckos, recovered from 19 modern, six historical/archival (1898–2011) and 16 Holocene Hoplodactylus duvaucelii sensu latu specimens, and one modern Woodworthia sp. specimen. No obvious damage was observed in post‐extraction micro‐computed tomography reconstructions. All “large gecko” specimens examined from extinct populations were found to be conspecific with extant Hoplodactylus species, suggesting their large relative size evolved only once in the New Zealand diplodactylid radiation. Phylogenetic analyses of Hoplodactylus samples recovered two genetically (and morphologically) distinct North and South Island clades, probably corresponding to distinct species. Finer phylogeographical structuring within Hoplodactylus spp. highlighted the impacts of Late Cenozoic biogeographical barriers, including the opening and closure of Pliocene marine straits, fluctuations in the size and suitability of glacial refugia, and eustatic sea‐level change. Recent mainland extinction obscured these signals from the modern tissue‐derived data. These results highlight the utility of minimally destructive DNA extraction in genomic analyses of less well studied small vertebrate taxa, and the conservation of natural history collections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.