Buckling and wrinkling instabilities are failure modes of elastic sheets that are avoided in the traditional material design. Recently, a new paradigm has appeared where these instabilities are instead being utilized for high-performance applications. Multiple approaches such as heterogeneous gelation, capillary stresses, and confinement have been used to shape thin macroscopic elastic sheets. However, it remains a challenge to shape two-dimensional self-assembled monolayers at colloidal or molecular length scales. Here, we show the existence of a curvature instability that arises during the crystallization of finite-sized monolayer membranes of chiral colloidal rods. While the bulk of the membrane crystallizes, its edge remains fluid like and exhibits chiral ordering. The resulting internal stresses cause the flat membrane to buckle macroscopically and wrinkle locally. Our results demonstrate an alternate pathway based on intrinsic stresses instead of the usual external ones to assemble non-Euclidean sheets at the colloidal length scale.
Binary phase separation of geometrically different colloidal rods in the presence of pinning leads to cyclic polygon shaped anisotropic fluid colloidal membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.