New bis-quinoline (Lq) and bis-isoquinoline-based (Liq) ligands have been synthesized, along with their respective homoleptic [Pd2(Lq or Liq)4]4+ cages (Cq and Ciq). The ligands and cages were characterized by 1H, 13C and diffusion ordered (DOSY) NMR spectroscopies, high resolution electrospray ionization mass spectrometry (HR-ESIMS) and in the case of the bis-quinoline cage, X-ray crystallography. The crystal structure of the Cq architecture showed that the [Pd2(Lq)4]4+ cage formed a twisted meso isomer where the [Pd(quinoline)4]2+ units at either end of the cage architecture adopt the opposite twists (left and right handed). Conversely, Density Functional Theory (DFT) calculations on the Ciq cage architecture indicated that a lantern shaped conformation, similar to what has been observed before for related [Pd2(Ltripy)4]4+ systems (where Ltripy = 2,6-bis(pyridin-3-ylethynyl)pyridine), was generated. The different cage conformations manifest different properties for the isomeric cages. The Ciq cage is able to bind, weakly in acetonitrile, the anticancer drug cisplatin whereas the Cq architecture shows no interaction with the guest under the same conditions. The kinetic robustness of the two cages in the presence of Cl− nucleophiles was also different. The Ciq cage was completely decomposed into free Liq and [Pd(Cl)4]2− within 1 h. However, the Cq cage was more long lived and was only fully decomposed after 7 h. The new ligands (Liq and Lq) and the Pd(II) cage architectures (Ciq and Cq) were assessed for their cytotoxic properties against two cancerous cell lines (A549 lung cancer and MDA-MB-231 breast cancer) and one non-cancerous cell line (HDFa skin cells). It was found that Lq and Cq were both reasonably cytotoxic (IC50S ≈ 0.5 μM) against A549, while Ciq was slightly less active (IC50 = 7.4 μM). Liq was not soluble enough to allow the IC50 to be determined against either of the two cancerous cell lines. However, none of the molecules showed any selectivity for the cancer cells, as they were all found to have similar cytotoxicities against HDFa skin cells (IC50 values ranged from 2.6 to 3.0 μM).
Local voltammetric analysis with a scanning electrochemical droplet cell technique, in combination with a new data processing protocol (termed data binning and trinisation), is used to directly identify previously unseen...
<p><b>This study explores the extraction of the vanadium from titanomagnetite ironsand (IS) from the West Coast of New Zealand, and a vanadium-rich concentrate (VRC) which is formed during the New Zealand steel-making process from this titanomagnetite resource. This extraction first involved an HCl leaching method, with acid concentrations ranging between 1M – 11.5M (concentrated) where the amount of Fe, Ti and V leached/dissolved from the VRC and titanomagnetite materials was determined with respect to leaching time. The concentrations of dissolved Fe, Ti and V in the leachates were measured by ICP-MS, and the solid residues by X-ray fluorescence spectroscopy. The morphology, chemical and individual component characterisation of the solid residues were carried out by X-ray diffraction and scanning electron microscopy and associated energy dispersive elemental and mapping analyses. The leaching results for the VRC showed no selective leaching of Fe, Ti, and V. The amount of Fe, Ti, and V leached increased with increasing HCl concentrations, up to about 50 % of the amount in the original VRC. A different approach was then taken where the VRC material was roasted overnight at two different temperatures (900 and 1200 °C) wherein the V and Mn formed a manganese vanadate phase(Mn2V2O7) and the Fe and Ti formed pseudobrookite (Fe2TiO5) within the VRC. The Mn2V2O7 phase was found to leach much more readily in HCl, while the pseudobrookite phase, which is comparatively acid-resistant, did not leach to any extent. HCl leaching of the roasted VRC thus resulted in selective dissolution of the V (86.89 % amount leached) from the Fe and Ti (~3 % amount leached). This provides a potential new approach for extracting the vanadium from the VRC material.</b></p> <p>In order to remove the small amount of Fe and Ti that did leach from the roasted VRC, an attempt to precipitate the dissolved Ti and Fe from the leachate was made. The dissolved Ti was seeded to promote hydrolysis and form TiO2, and the Fe was precipitated by increasing the pH to form an iron hydroxide precipitate. ICP-MS analysis of the resulting filtrate showed a large decrease in the concentrations of Fe, Ti, and V compared to the starting leachate, indicating that the V in solution was removed alongside the Ti and Fe. This was likely caused by the V 5+ forming V2O5 and/or being adsorbed onto the surface of the iron hydroxide precipitate. This method to separate the residual dissolved Fe and Ti in the roasted VRC leachate was deemed unsuitable for the extraction of vanadium. The leaching experiments were repeated with the IS material, and again no selective leaching of Fe, Ti and V was found. Approximately 73 % of these elements were leached. A portion of the IS material was roasted (900 °C overnight) in an attempt to form an acid-soluble manganese vanadium phase similar to the one formed in the VRC roast. Only a small amount of this phase could be identified in the EDS and XRD analyses. HCl leaching of the roasted material similarly resulted in selective dissolution of ii the V (29.26 % amount leached) from the Fe and Ti (~13 % amount leached), although total dissolution for these elements was decreased after roasting. This research has therefore shown that V can be selectively leached from the IS and VRC materials, using a pre-roasting stage to form the manganese vanadate Mn2V2O7 phase which is more readily soluble in HCl than the pseudobrookite Ti- and Fe- containing phase.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.