For over 50 years, high-pressure gas turbine blades have been cooled using air bled from the compressor. This cooling results in very high rates of heat transfer, both within the fluid and within the blade. The heat transfer often occurs across large differences in temperature and thus is highly irreversible. It is therefore surprising that little is understood about the effect of this heat transfer on turbine performance. This paper solves this problem by applying a new method known as mechanical work potential, or euergy, analysis. The key consequence of the analysis is that the value placed on all heat, relative to work, becomes set by the Joule (Brayton) cycle efficiency. This means that when heat is transferred locally within a flow, or when viscous reheat occurs, the value of this heat should be set by the Joule cycle efficiency. This paper demonstrates how the new method can be implemented both in the preliminary design systems and in the analysis of conjugate CFD solutions of complex engine representative components. The new method provides the cooling designer with a new way of raising turbine efficiency, a form of recuperation locally in the flow. This method offers the exciting potential to design cooling systems that, when added to a blade profile, actually reduces profile loss by up to 7.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.