Fungal biomasses are capable of treating metal-contaminated effluents with efficiencies several orders of magnitude superior to activated carbon (F-400) or the industrial resin Dowex-50. Additionally, fungal biomasses are susceptible to engineering improvements and regeneration of their capabilities. With regard to organic pollutants, excessive nutrients and dyes, fungi can remove them from wastewaters, leading to a decrease in their toxicities. However, the detoxification rates seem to be dependent on media and culture conditions. The postreatement by anaerobic bioprocesses of effluents that have been pretreated with fungi can lead to higher biogas than the original effluents. In addition to the degradation of organic pollutants, fungi produce added-value products such as enzymes (LiP, MnP, Lacc, amylase, etc.) and single-cell protein (SCP). Most research on fungal capacities to purify polluted effluents has been performed on a laboratory scale, hence there is a need to extend such research to pilot scale and to apply it to industrial processes.
Although several emerging contaminants (e.g. fluoro(quinolones) (FQs)) have been simultaneously detected in environmental systems, there is very limited information on their elimination from contaminated waters in multi-component systems. In this study, removal of three FQs including flumequine (FLU), ciprofloxacin (CIP) and norfloxacin (NOR) were investigated in single and mixture systems, using natural laterite soil and persulfate (PS) under UVA irradiation. Both sorption and oxidation reactions contribute to the removal of FQs from aqueous phase, whereas quenching experiments showed that SO is mainly responsible for the FQs oxidation. The kinetic rate constants can be ranked as follows: CIP > NOR > FLU, regardless of whether the compound was alone or in mixture. The higher degradation rate constant of CIP relative to those of NOR and FLU could be explained by the high reactivity of SO radical with cyclopropane-ring containing compounds. Fall in oxidation performance was observed in synthetic wastewater, probably due to sulfate radical scavenging by wastewater components. However, degradation rate constants of CIP in wastewater remains unchanged in mixture systems as compared to single ones. This environmentally friendly remediation technology may appear as a promising way for the removal of fluoroquinolone antibiotics from multi-contaminated waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.