The incidence of human papillomavirus (HPV)-related oropharynx cancer has steadily increased over the past two decades and now represents a majority of oropharyngeal cancer cases. Integration of the HPV genome into the host genome is a common event during carcinogenesis that has clinically relevant effects if the viral early genes are transcribed. Understanding the impact of HPV integration on clinical outcomes of head and neck squamous cell carcinoma (HNSCC) is critical for implementing deescalated treatment approaches for HPV HNSCC patients. RNA sequencing (RNA-seq) data from HNSCC tumors ( = 84) were used to identify and characterize expressed integration events, which were overrepresented near known head and neck, lung, and urogenital cancer genes. Five genes were recurrent, including A significant number of genes detected to have integration events were found to interact with Tp63, ETS, and/or FOX1A. Patients with no detected integration had better survival than integration-positive and HPV patients. Furthermore, integration-negative tumors were characterized by strongly heightened signatures for immune cells, including CD4, CD3, regulatory, CD8 T cells, NK cells, and B cells, compared with integration-positive tumors. Finally, genes with elevated expression in integration-negative specimens were strongly enriched with immune-related gene ontology terms, while upregulated genes in integration-positive tumors were enriched for keratinization, RNA metabolism, and translation. These findings demonstrate the clinical relevancy of expressed HPV integration, which is characterized by a change in immune response and/or aberrant expression of the integration-harboring cancer-related genes, and suggest strong natural selection for tumor cells with expressed integration events in key carcinogenic genes. .
Structured Abstract
Purpose
There is substantial heterogeneity within human papillomavirus (HPV) associated head and neck cancer (HNC) tumors that predispose them to different outcomes, however the molecular heterogeneity in this subgroup is poorly characterized due to various historical reasons.
Experimental Design
We performed unsupervised gene expression clustering on deeply-annotated (transcriptome and genome) HPV(+) HNC samples from two cohorts (84 total primary tumors), including 18 HPV(−) HNC samples, to discover subtypes and characterize the differences between subgroups in terms of their HPV characteristics, pathway activity, whole-genome somatic copy number alterations and mutation frequencies.
Results
We identified two distinct HPV(+) subtypes (namely HPV-KRT and HPV-IMU). HPV-KRT is characterized by elevated expression of genes in keratinocyte differentiation and oxidation-reduction process, whereas HPV-IMU has strong immune response and mesenchymal differentiation. The differences in expression are likely connected to the differences in HPV characteristics and genomic changes. HPV-KRT has more genic viral integration, lower E2/E4/E5 expression levels and higher ratio of spliced to full length HPV oncogene E6 than HPV-IMU; the subgroups also show differences in copy number alterations and mutations, in particular the loss of chr16q in HPV-IMU and gain of chr3q and PIK3CA mutation in HPV-KRT.
Conclusion
Our characterization of two subtypes of HPV(+) HNC tumors provides valuable molecular level information that point to two main carcinogenic paths. Together, these results shed light on stratifications of the HPV(+) HNCs and will help to guide personalized care for HPV(+) HNC patients.
Complex inflammatory signalling cascades define the response to tissue injury but also control development and homeostasis, limiting the potential for these pathways to be targeted therapeutically. Primary cilia are subcellular regulators of cellular signalling, controlling how signalling is organized, encoded and, in some instances, driving or influencing pathogenesis. Our previous research revealed that disruption of ciliary intraflagellar transport (IFT), altered the cell response to IL-1β, supporting a putative link emerging between cilia and inflammation. Here, we show that IFT88 depletion affects specific cytokine-regulated behaviours, changing cytosolic NFκB translocation dynamics but leaving MAPK signalling unaffected. RNA-seq analysis indicates that IFT88 regulates one third of the genome-wide targets, including the pro-inflammatory genes Nos2, Il6 and Tnf. Through microscopy, we find altered NFκB dynamics are independent of assembly of a ciliary axoneme. Indeed, depletion of IFT88 inhibits inflammatory responses in the non-ciliated macrophage. We propose that ciliary proteins, including IFT88, KIF3A, TTBK2 and NPHP4, act outside of the ciliary axoneme to tune cytoplasmic NFκB signalling and specify the downstream cell response. This is thus a non-canonical function for ciliary proteins in shaping cellular inflammation. This article has an associated First Person interview with the first author of the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.