When creating titanium-containing bone implants, the bioactive coatings that promote their rapid engraftment are important. The engraftment rate of titanium implants with bone tissue depends significantly on the modification of the implant surface. It is achieved by changing either the relief or the chemical composition of the surface layer, as well as a combination of these two factors. In this work, we studied the creation of composite coatings with a two-level (the micro- and nanolevel) hierarchy of the surface relief, which have bioactive and bactericidal properties, which are promising for bone implantation. Using the developed non-lithographic template electrochemical synthesis, a composite coating on titanium with a controlled surface structure was created based on an island-type TiO2 film, silver and hydroxyapatite (HAp). This TiO2/Ag/HAp composite coating has a developed surface relief at the micro- and nanolevels and has a significant cytological response and the ability to accelerate osteosynthesis, and also has an antibacterial effect. Thus, the developed biomaterial is suitable for production of dental and orthopedic implants with improved biomedical properties.
Atomic layer deposition (ALD) is a useful tool for producing ultrathin films and coatings of complex composition with high thickness control for a wide range of applications. In this study, the growth of zinc–titanium oxide nanofilms was investigated. Diethyl zinc, titanium tetrachloride, and water were used as precursors. The supercycle approach was used, and wide ZnO/TiO2 (ZTO) ALD cycles were prepared: 5/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/5, 1/10, 1/20. Spectral ellipsometry, X-ray reflectometry, X-ray diffraction, scanning electron microscopy, SEM-EDX, and contact angle measurements were used to characterize the thickness, morphology, and composition of the films. The results show that the thicknesses of the coatings differ considerably from those calculated using the rule of mixtures. At high ZnO/TiO2 ratios, the thickness is much lower than expected and with increasing titanium oxide content the thickness increases significantly. The surface of the ZTO samples contains a significant amount of chlorine in the form of zinc chloride and an excessive amount of titanium. The evaluation of the antibacterial properties showed significant activity of the ZTO–1/1 sample against antibiotic-resistant strains and no negative effect on the morphology and adhesion of human mesenchymal stem cells. These results suggest that by tuning the surface composition of ALD-derived ZTO samples, it may be possible to obtain a multi-functional material for use in medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.