RNA interference-related strategies have become appealing methods in various fields of research. Exact sequence design of these small molecules is an essential step in the silencing procedure. Numerous researchers have tried to define some algorithms in order to increase the chance of short interfering RNA's (siRNA's) success. In recent decades, online designing software has aimed at promoting the quality of siRNA designing based on the most cited algorithms. According to our previous experiments, a combination of different criteria would be helpful. That is, siRNAs suggested by a combination of tools seem to be more efficient. Furthermore, different factors such as distance of target region to transcription start site, nucleotide composition, absence of off-target effects and secondary structures in the target site and siRNA and the presence of asymmetry and energy valley within the siRNA will increase the efficiency of siRNAs. Despite application of different online tools and fulfilling the criteria, there is no guarantee for designing an effective siRNA. However, meticulous designing of siRNAs according to the suggested algorithms and scoring systems and using different siRNAs for targeting the same gene would lead to improved silencing outcome. In this review, we focus on common algorithms and online software, and introduce a new scoring system used in our experiments.
Overexpression of DNA methyltransferase 1 (DNMT-1) is observed mostly in pancreatic cancer and it can cause tumor suppressor genes silencing in this disease. Recent studies suggest that abnormal expressions of microRNAs (miRs) are involved in pathogenesis of different types of human cancers including pancreatic cancer. In this study we aimed to investigate the effect of miR-148b and -152 on reverting the tumorigenic phenotype of pancreatic cancer cell lines. In order to investigate whether miR-148b and -152 are involved in the regulation of DNMT-1, luciferase reporter assay was used and confirmed that the DNMT-1 mRNA could be a target for miR-148b and miR-152. Furthermore, overexpression of miR-148b and -152 in pancreatic cancer cell lines (MIA PaCa-2 and AsPC-1) decreased DNMT-1 expression (53% and 59% respectively), returned DNA methylation to normal patterns and induced re-expression of tumor suppressor genes, like BNIP3 (4.7- and 3.8-fold) and SPARC (5.3- and 2.9-fold) for miR-148b and -152 respectively. Moreover, the introduced miR-148b and -152 could inhibit the proliferation of MIA PaCa-2 (35% and 37% respectively) and AsPC-1 (39% and 40% respectively) cell lines. The apoptosis rates of MIA PaCa-1 after treatment with miR-148b and -152 were 10% and 8% respectively; while these rates in AsPC-1 were 16% and 11% respectively. Conclusively these findings mean that miRs that are targeting DNMT-1 and modifying methylation status of tumor suppressor genes such as BNIP3 and SPARC can be applied in killing the pancreatic cancer cells and decreasing the tumorigenicity of these cells.
It is observed that upregulation of DNMT3B enzyme in some cancers, including colon cancer, could lead to silencing of tumor suppressor genes. MiR-339 and miR-766 have been predicted to target 3 0 UTR of DNMT3B gene. Luciferase reporter assay validated that individual and co-transfection of miR-766 and miR-339 into the HEK293T cell reduced luciferase activity to 26% § 0.41%, 43% § 0.42 and 64% § 0.52%, respectively, compared to the control (P < 0.05). Furthermore, transduction of miR-339 and miR-766 expressing viruses into colon cancer cell lines (SW480 and HCT116) decreased DNMT3B expression (1.5, 3-fold) and (3, 4-fold), respectively. In addition, DNA methylation of some tumor suppressor genes decreased. Expression of these genes such as SFRP1 (2 and 1.6-fold), SFRP2 (0.07 and 4-fold), WIF1 (0.05 and 4-fold), and DKK2 (2 and 4-fold) increased in SW-339 and SW-766 cell lines; besides, expression increments for these genes in HCT-339 and HCT-766 cell lines were (2.8, 4-fold), (0.005, 1.5-fold), (1.7 and 3-fold) and (0.04, 1.7-fold), respectively. Also, while in SW-766, cell proliferation reduced to 2.8% and 21.7% after 24 and 48 hours, respectively, SW-339 showed no reduced proliferation. Meanwhile, HCT-766 and HCT-339 showed (3.5%, 12.8%) and (18.8%, 33.9%) reduced proliferation after 24 and 48 hours, respectively. Finally, targeting DNMT3B by these miRs, decreased methylation of tumor suppressor genes such as SFRP1, SFRP2, WIF1 and DKK2 in the mentioned cell lines, and returned the expression of these tumor suppressor genes which can contribute to lethal effect on colon cancer cells and reducing tumorigenicity of these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.