Recently, the PAT family of proton-dependent amino acid transporters has been identified as a novel class of mammalian amino acid symporters. PAT1 and PAT2 members mediate electrogenic uptake of small, neutral amino acids and derivatives by cotransport of protons. Analysis of the structural requirements for substrate recognition by PAT1 identified that a free amino group in a substrate is not essential for recognition. We therefore hypothesized that PAT1 and its ortholog PAT2 may also be able to recognize and transport the homologous short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. We examined in Xenopus laevis oocytes whether the SCFAs interact with the transporter by employing flux studies, electrophysiology and intracellular pH recordings. SCFAs did not induce positive inward currents but inhibited glycine-induced transport currents. PAT-mediated uptake of radiolabeled proline was also dose-dependently reduced by SCFA and could be described by first order competition kinetics with apparent Ki-values for butyrate of 6.0 +/- 0.7 and 7.6 +/- 1.3 mM for PAT1 and PAT2, respectively. Acetate as well as propionate uptake was significantly enhanced in oocytes expressing PAT1 or PAT2. An electroneutral H+/SCFA symport mode was demonstrated by recording intracellular pH changes under voltage clamp conditions with rate constants for the initial intracellular acidification in the presence of SCFAs significantly increased in PAT-expressing oocytes. In conclusion, our data demonstrate that the PAT1 and PAT2 proteins are capable to transport selected SCFAs in an electroneutral and the homologous amino acids in an electrogenic mode and are therefore a paradigm for bifunctional solute carriers.
Inulin-type fructans at dietary levels of 10 % (w/w) do increase mineral absorption, retention and accumulation in bone in the case of Ca, Mg and Zn, but only when the basic diet for the control group contains no intrinsic fructans and when the mineral demand is particularly high as during growth.
For people in Western countries, the vegan diet has the advantage of low energy intake, but the calcium status of this strictly plant-based diet is still unclear. The aim of this study was to determine the calcium balance of individuals on a vegan diet in comparison with a lactovegetarian diet in a short-term investigation. Seven women and one man, ranging in age from 19 to 24 years, received during the first 10 days a vegan diet based on plant foods and calcium-rich mineral water and a lactovegetarian diet during the following 10 days. Portion size was adapted to the subjects' individual energy requirements. Calcium status was assessed by means of calcium intake in food and calcium output in feces and urine as measured by flame atomic absorption spectrophotometry. In addition, deoxypyridinoline was measured in urine as a marker of bone resorption. The results show a significantly smaller daily calcium intake with an average of 843 +/- 140 mg in the vegan versus 1322 +/- 303 mg in the lactovegetarian diet. Apparent calcium absorption rates were calculated as 26% +/- 15% in the vegan and 24% +/- 8% in the lactovegetarian group (NS). The calcium balance was positive both in the vegan diet (119 +/- 113 mg/day) and in the lactovegetarian diet (211 +/- 136 mg/day) (NS). Deoxypyridinoline excretion showed no significant difference between the two diets (105 +/- 31 and 98 +/- 23 nmol/day). The present results indicate that calcium balance and a marker of bone turnover are not affected significantly when calcium is provided either solely by plant foods or by a diet including dairy products, despite the significantly different calcium intake levels in the diets. We conclude that a well-selected vegan diet maintains calcium status, at least for a short-term period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.