With the increasing demand for electric power, the development of new power generation technologies is gaining increased attention. The supercritical carbon dioxide (S-CO2) cycle is one such technology, which has relatively high efficiency, compactness, and potentially could provide complete carbon capture. The S-CO2 cycle technology is adaptable for almost all of the existing heat sources such as solar, geothermal, fossil, nuclear power plants, and waste heat recovery systems. However, it is known that optimal combinations of operating conditions, equipment, working fluid, and cycle layout determine the maximum achievable efficiency of a cycle. Within an S-CO2 cycle, the compression device is of critical importance as it is operating near the critical point of CO2. However, near the critical point, the thermo-physical properties of CO2 are highly sensitive to changes of pressure and temperature. Therefore, the conditions of CO2 at the compressor inlet are critical in the design of such cycles. Also, the impurity species diluted within the S-CO2 will cause deviation from an ideal S-CO2 cycle as these impurities will change the thermodynamic properties of the working fluid. Accordingly, the current work examines the effects of different impurity compositions, considering binary mixtures of CO2 and He, CO, O2, N2, H2, CH4, or H2S on various S-CO2 cycle components. The second part of the study focuses on the calculation of the basic cycles and component efficiencies. The results of this study will provide guidance and define the optimal composition of mixtures for compressors and coolers.