The purpose of this research was to evaluate the potential of Artificial Neural Networks in estimating the properties of wood resistance. In order to do so, a hybrid of eucalyptus (Eucalyptus urograndis) planted in the Northern Region of the State of Mato Grosso was selected and ten trees were collected. Then, four samples of each tree were removed, totaling 40 samples, which were later subjected to non-destructive testing of apparent density, ultrasonic wave propagation velocity, dynamic modulus of elasticity obtained by ultrasound, and Janka hardness. These properties were used as estimators of resistance and compressive strength parallel to fibers, and hardness. Multilayer Perceptron networks were also employed, training 100 of them for each of the evaluated parameters. The obtained results indicated that the use of Artificial Neural Networks is an efficient tool for predicting wood resistance.
ABSTRACT:The analysis and information ordering on the forest sector generate data that may assist both strategic decisions making and new public policies COMPROVANTES DE LIBERAÇÃO DE CRÉDITO FLORESTAL (CLCF) PARA O MUNICÍPIO DE SINOP, MATO GROSSO, BRASIL RESUMO: A análise e o ordenamento de informações sobre o setor florestal geram dados que podem auxiliar tanto na tomada de decisões estratégicas, quanto na elaboração de novas políticas públicas. Deste modo, torna-se essencial a análise dos Comprovantes de Liberação de Crédito Florestal (CLCF), que é atualmente uma das principais ferramentas utilizadas pelo Estado de Mato Grosso para controle e fiscalização de áreas liberadas para obtenção legal de madeira tropical, seja por meio dos Planos de Manejo Florestal Sustentável (PMFS) ou ainda, por intermédio dos Planos de Exploração Florestal (PEF). O estudo teve por objetivo avaliar as Autorizações de Exploração Florestal (AUTEX e AEF) e seus respectivos CLCF referentes aos PMFS e aos PEF entre os anos de 2006 a 2013 no município de Sinop-MT. Os documentos foram obtidos junto a Secretaria Estadual do Meio Ambiente do Estado de Mato Grosso (SEMA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.