Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association meta-analysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability for the overall meta-analysis (AGGoverall) was 3.31% (SE = 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-based analysis returned three significant genes: ST3GAL3 (P = 1.6E–06), PCDH7 (P = 2.0E–06), and IPO13 (P = 2.5E–06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations (rg) among rater-specific assessment of AGG ranged from rg = 0.46 between self- and teacher-assessment to rg = 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range $$\left| {r_g} \right|$$ r g : 0.19–1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg = ~−0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range $$\left| {r_g} \right|$$ r g : 0.46–0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.
BackgroundIn a variety of animal species, hyperthermia in pregnancy has been recognized as teratogenic. Hyperthermia interferes with protein synthesis via heat-shock proteins, which can entail membrane disruption, cell death, vascular disruption, and placental infarction. This can induce severe fetal malformations or death. Fever during pregnancy, especially during embryogenesis, has also been associated with congenital malformations in human offspring.The purpose of this large cohort study of clinically recognized pregnancies was to investigate whether fever during first trimester was associated with an increased risk of congenital malformations in the offspring.MethodsThe Danish National Birth Cohort is a population-based cohort of 100,418 pregnant women and their offspring recruited in 1996 to 2002. Information on fever during pregnancy was collected prospectively by means of two telephone interviews.The study population comprised the 77,344 pregnancies enrolled in the Danish National Birth Cohort where self-reported information on fever during first trimester of pregnancy was available. Pregnancy outcomes were identified through linkage with the National Patient Registry. Congenital malformations within the first three and a half years of life were categorized according to EUROCAT’s classification criteria. Logistic regression models were used to estimate the associations between fever in first trimester and overall congenital malformations and congenital malformations by subgroups.ResultsEight thousand three hundred twenty-one women reported fever during first trimester (10.8%) and 2876 infants were diagnosed with a congenital malformation (3.7%). Fever during first trimester did not affect the risk of overall fetal congenital malformation (OR 0.99, 95% CI 0.88–1.12). The subgroup analyses indicated slightly higher risk of congenital anomalies in the eye, ear, face and neck (OR 1.29, 95% CI 0.78–2.12) and in the genitals (OR 1.17, 95% CI 0.79–1.12), whereas lower risk of malformations in the nervous system (OR 0.47, 95% CI 0.21–1.08), the respiratory system (OR 0.56, 95% CI 0.23–1.29) and in the urinary subgroup (OR 0.58, 95% CI 0.35–0.99) was suggested, the latter constituting the only statistically significant finding.ConclusionsOverall, this study did not show any association between maternal fever in pregnancy and risk of congenital anomalies.
Cranial growth and development is a complex process which affects the closely related traits of head circumference (HC) and intracranial volume (ICV). The underlying genetic influences shaping these traits during the transition from childhood to adulthood are little understood, but might include both age-specific genetic factors and low-frequency genetic variation. Here, we model the developmental genetic architecture of HC, showing this is genetically stable and correlated with genetic determinants of ICV. Investigating up to 46,000 children and adults of European descent, we identify association with final HC and/or final ICV + HC at 9 novel common and low-frequency loci, illustrating that genetic variation from a wide allele frequency spectrum contributes to cranial growth. The largest effects are reported for low-frequency variants within TP53, with 0.5 cm wider heads in increaser-allele carriers versus non-carriers during mid-childhood, suggesting a previously unrecognized role of TP53 transcripts in human cranial development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.