Actinobacteria of the genus Amycolatopsis are important for antibiotic production and other valuable biotechnological applications such as bioconversion or bioremediation. Despite their importance, tools and methods for their genetic manipulation are less developed than in other actinobacteria such as Streptomyces. We report here the use of the pSAM2 site-specific recombination system to delete antibiotic resistance cassettes used in gene replacement experiments or to create large genomic deletions. For this purpose, we constructed a shuttle vector, replicating in Escherichia coli and Amycolatopsis, expressing the integrase and the excisionase from the Streptomyces integrative and conjugative element pSAM2. These proteins are sufficient for site-specific recombination between the attachment sites attL and attR. We also constructed two plasmids, replicative in E. coli but not in Amycolatopsis, for the integration of the attL and attR sites on each side of a large region targeted for deletion. We exemplified the use of these tools in Amycolatopsis mediterranei by obtaining with high efficiency a marker-free deletion of one single gene in the rifamycin biosynthetic gene cluster or of the entire 90-kb cluster. These robust and simple tools enrich the toolbox for genome engineering in Amycolatopsis.
Actinobacteria belonging to the genus Amycolatopsis are important for antibiotic production and other valuable biotechnological applications such as biodegradation or bioconversion. Despite their industrial importance, tools and methods for the genetic manipulation of Amycolatopsis are less developed than in other actinobacteria such as Streptomyces. Moreover, most of the existing methods do not support convenient marker-free genome engineering. Here, we report the use of the pSAM2 site-specific recombination system for the efficient deletion of marker genes or large DNA regions in Amycolatopsis. For this purpose, we constructed a shuttle vector, replicating in Escherichia coli and Amycolatopsis, expressing the Xis and Int proteins from the Streptomyces integrative and conjugative element pSAM2. These proteins are sufficient for site-specific recombination between the attachment sites attL and attR. We also constructed two plasmids, replicative in E. coli but not in Amycolatopsis, for the integration of the recombination sites attL and attR on each side of a region targeted for deletion. We exemplified the use of these tools in Amycolatopsis mediterranei DSM 40773 by obtaining with high efficiency (>95%) a marker-free deletion of one single gene in the rifamycin biosynthetic gene cluster or of the entire 90-kb cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.