International audienceThe exponential development of molecular markers enables a more effective study of the genetic architecture of traits of economic importance, like test weight in wheat (Triticum aestivum L.), for which a high value is desired by most end-users. The association mapping (AM) method now allows more precise exploration of the entire genome. AM requires populations with substantial genetic variability of the traits of interest. The breeding lines at the end of a selection cycle, characterized for numerous traits, represent a potentially useful population for AM studies. Using three elite line populations, selected by several breeders and genotyped with about 2,500 Diversity Arrays Technology markers, several associations were identified between these markers and test weight, grain yield and heading date. To minimize spurious associations, we compared the general linear model and mixed linear model (MLM), which adjust for population structure and kinship differently. The MLM model with the kinship matrix was the most efficient. Finally, elite lines from several breeding programs had sufficient genetic variability to allow for the mapping of several chromosomal regions involved in the variation of three important traits
Five genomic prediction models were applied to three wheat agronomic traits—grain yield, heading date and grain test weight—in three breeding populations, each comprising about 350 doubled haploid or recombinant inbred lines evaluated in three locations during a 3-year period. The prediction accuracy, measured as the correlation between genomic estimated breeding value and observed trait, was in the range of previously published values for yield (r = 0.2–0.5), a trait with relatively low heritability. Accuracies for heading date and test weight, with relatively high heritabilities, were about 0.70. There was no improvement of prediction accuracy when two or three breeding populations were merged into one for a larger training set (e.g., for yield r ranged between 0.11 and 0.40 in the respective populations and between 0.18 and 0.35 in the merged populations). Cross-population prediction, when one population was used as the training population set and another population was used as the validation set, resulted in no prediction accuracy. This lack of cross-population prediction accuracy cannot be explained by a lower level of relatedness between populations, as measured by a shared SNP similarity, since it was only slightly lower between than within populations. Simulation studies confirm that cross-prediction accuracy decreases as the proportion of shared QTLs decreases, which can be expected from a higher level of QTL × environment interactions.Electronic supplementary materialThe online version of this article (doi:10.1007/s11032-014-0143-y) contains supplementary material, which is available to authorized users.
The aim of this work was to define reliable markers of muscle and processing time in dry-cured ham using a rapid, precise semi quantitative method for the protein fraction soluble in low ionic strength buffer. For this purpose protein labchip Agilent was used to separate proteins and peptides and accurately determine their molecular weights and concentrations electrophoretically. In this way the protein fingerprinting of dry-cured ham at different process times was characterised, together with targets and products of proteolysis. In addition, the comparison of all the electrophoregrams indicated muscle and dry-curing process markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.