Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.
Global biodiversity change is one of the most pressing environmental issues of our time. Here, we review current scientific knowledge on global biodiversity change and identify the main knowledge gaps. We discuss two components of biodiversity change-biodiversity alterations and biodiversity loss-across four dimensions of biodiversity: species extinctions, species abundances, species distributions, and genetic diversity. We briefly review the impacts that modern humans and their ancestors have had on biodiversity and discuss the recent declines and alterations in biodiversity. We analyze the direct pressures on biodiversity change: habitat change, overexploitation, exotic species, pollution, and climate change. We discuss the underlying causes, such as demographic growth and resource use, and review existing scenario projections. We identify successes and impending opportunities in biodiversity policy and management, and highlight gaps in biodiversity monitoring and models. Finally, we discuss how the ecosystem services framework can be used to identify undesirable biodiversity change and allocate conservation efforts.
For millennia, mankind has shaped landscapes, particularly through agriculture. In Europe, the age-old interaction between humans and ecosystems strongly influenced the cultural heritage. Yet European farmland is now being abandoned, especially in remote areas. The loss of the traditional agricultural landscapes and its consequences for biodiversity and ecosystem services is generating concerns in both the scientific community and the public. Here we ask to what extent farmland abandonment can be considered as an opportunity for rewilding ecosystems. We analyze the perceptions of traditional agriculture in Europe and their influence in land management policies. We argue that, contrary to the common perception, traditional agriculture practices were not environmentally friendly and that the standards of living of rural populations were low. We suggest that current policies to maintain extensive farming landscapes underestimate the human labor needed to sustain these landscapes and the recent and future dynamics of the socio-economic drivers behind abandonment. We examine the potential benefits for ecosystems and people from rewilding. We identify species that could benefit from land abandonment and forest regeneration and the ecosystem services that could be provided such as carbon sequestration and recreation. Finally, we discuss the challenges associated with rewilding, including the need to maintain open areas, the fire risks, and the conflicts between people and wildlife. Despite these challenges, we argue that rewilding should be recognized by policy-makers as one of the possible land management options in Europe, particularly on marginal areas.
The practice of rewilding has been both promoted and criticized in recent years. Benefits include flexibility to react to environmental change and the promotion of opportunities for society to reconnect with nature. Criticisms include the lack of a clear conceptualization of rewilding, insufficient knowledge about possible outcomes, and the perception that rewilding excludes people from landscapes. Here, we present a framework for rewilding that addresses these concerns. We suggest that rewilding efforts should target trophic complexity, natural disturbances, and dispersal as interacting processes that can improve ecosystem resilience and maintain biodiversity. We propose a structured approach to rewilding projects that includes assessment of the contributions of nature to people and the social-ecological constraints on restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.