Activation by the Y-encoded testis determining factor SRY and maintenance of expression of the Sox9 gene encoding the central transcription factor of Sertoli cell differentiation are key events in the mammalian sexual differentiation program. In the mouse XY gonad, SOX9 upregulates Fgf9, which initiates a Sox9/Fgf9 feedforward loop, and Sox9 expression is stimulated by the prostaglandin D2 (PGD2) producing lipocalin prostaglandin D synthase (L-PGDS, or PTDGS) enzyme, which accelerates commitment to the male pathway. In an attempt to decipher the genetic relationships between Sox9 and the L-Pgds/PGD2 pathway during mouse testicular organogenesis, we found that ablation of Sox9 at the onset or during the time window of expression in embryonic Sertoli cells abolished L-Pgds transcription. By contrast, L-Pgds -/-XY embryonic gonads displayed a reduced level of Sox9 transcript and aberrant SOX9 protein subcellular localization. In this study, we demonstrated genetically that the L-Pgds/PGD2 pathway acts as a second amplification loop of Sox9 expression. Moreover, examination of Fgf9 -/-and L-Pgds -/-XY embryonic gonads demonstrated that the two Sox9 gene activity amplifying pathways work independently. These data suggest that, once activated and maintained by SOX9, production of testicular L-PGDS leads to the accumulation of PGD2, which in turn activates Sox9 transcription and nuclear translocation of SOX9. This mechanism participates together with FGF9 as an amplification system of Sox9 gene expression and activity during mammalian testicular organogenesis.
Despite recent advances in the treatment of colon cancer, tumor resistance is a frequent cause of chemotherapy failure. To better elucidate the molecular mechanisms involved in resistance to irinotecan (and its active metabolite SN38), we established SN38-resistant clones derived from HCT-116 and SW48 cell lines. These clones show various levels (6-to 60-fold) of resistance to SN-38 and display enhanced levels of activated MAPK p38 as compared with the corresponding parental cells. Because four different isoforms of p38 have been described, we then studied the effect of p38 overexpression or downregulation of each isoform on cell sensivity to SN38 and found that both a and b isoforms are involved in the development of resistance to SN38. In this line, we show that cell treatment with SB202190, which inhibits p38a and p38b, enhanced the cytotoxic activity of SN38. Moreover, p38 inhibition sensitized tumor cells derived from both SN38-sensitive and -resistant HCT116 cells to irinotecan treatment in xenograft models. Finally, we detected less phosphorylated p38 in primary colon cancer of patients sensitive to irinotecan-based treatment, compared with nonresponder patients. This indicates that enhanced level of phosphorylated p38 could predict the absence of clinical response to irinotecan. Altogether, our results show that the p38 MAPK pathway is involved in irinotecan sensitivity and suggest that phosphorylated p38 expression level could be used as a marker of clinical resistance to irinotecan. They further suggest that targeting the p38 pathway may be a potential strategy to overcome resistance to irinotecan-based chemotherapies in colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.