Lysyl hydroxylase 3 (LH3) is a multifunctional enzyme possessing lysyl hydroxylase (LH), hydroxylysyl galactosyltransferase (GT) and galactosylhydroxylysyl glucosyltransferase (GGT) activities in vitro. To investigate the in vivo importance of LH3-catalyzed lysine hydroxylation and hydroxylysine-linked glycosylations, three different LH3-manipulated mouse lines were generated. Mice with a mutation that blocked only the LH activity of LH3 developed normally, but showed defects in the structure of the basement membrane and in collagen fibril organization in newborn skin and lung. Analysis of a hypomorphic LH3 mouse line with the same mutation, however, demonstrated that the reduction of the GGT activity of LH3 disrupts the localization of type IV collagen, and thus the formation of basement membranes during mouse embryogenesis leading to lethality at embryonic day (E) 9.5-14.5. Strikingly, survival of hypomorphic embryos and the formation of the basement membrane were directly correlated with the level of GGT activity. In addition, an LH3-knockout mouse lacked GGT activity leading to lethality at E9.5. The results confirm that LH3 has LH and GGT activities in vivo, LH3 is the main molecule responsible for GGT activity and that the GGT activity, not the LH activity of LH3, is essential for the formation of the basement membrane. Together our results demonstrate for the first time the importance of hydroxylysine-linked glycosylation for collagens.
The contributions of DNA polymerases alpha, delta, and epsilon to SV40 and nuclear DNA syntheses were evaluated. Proteins were UV‐crosslinked to nascent DNA within replicating chromosomes and the photolabelled polymerases were immunopurified. Only DNA polymerases alpha and delta were detectably photolabelled by nascent SV40 DNA, whether synthesized in soluble viral chromatin or within nuclei isolated from SV40‐infected cells. In contrast, all three enzymes were photolabelled by the nascent cellular DNA. Mitogenic stimulation enhanced the photolabelling of the polymerases in the alpha>delta>epsilon order of preference. The data agree with the notion that DNA polymerases alpha and delta catalyse the principal DNA polymerisation reactions at the replication fork of SV40 and, perhaps, also of nuclear chromosomes. DNA polymerase epsilon, implicated by others as a cell‐cycle checkpoint regulator sensing DNA replication lesions, may be dispensable for replication of the small, fast propagating virus that subverts cell cycle controls.
Collagen glucosyltransferase (GGT) activity has recently been shown to be associated with human lysyl hydroxylase (LH) isoform 3 (LH3) (Heikkinen, J., Risteli, M., Wang, C., Latvala, J., Rossi, M., Valtavaara, M., Myllylä , R. (2000) J. Biol. Chem. 275, 36158 -36163). The LH and GGT activities of the multifunctional LH3 protein modify lysyl residues in collagens posttranslationally to form hydroxylysyl and glucosylgalactosyl hydroxylysyl residues respectively. We now report that in the nematode, Caenorhabditis elegans, where only one ortholog is found for lysyl hydroxylase, the LH and GGT activities are also associated with the same gene product. The aim of the present studies is the identification of amino acids important for the catalytic activity of GGT. Our data indicate that the GGT active site is separate from the carboxyl-terminal LH active site of human LH3, the amino acids important for the GGT activity being located at the amino-terminal part of the molecule. Site-directed mutagenesis of a conserved cysteine at position 144 to isoleucine and a leucine at position 208 to isoleucine caused a marked reduction in GGT activity. These amino acids were conserved in C. elegans LH and mammalian LH3, but not in LH1 or LH2, which lack GGT activity. The data also reveal a DXD-like motif in LH3 characteristic of many glycosyltransferases and the mutagenesis of aspartates of this motif eliminated the GGT activity. Reduction in GGT activity was not accompanied by a change in the LH activity of the molecule. Thus GGT activity can be manipulated independently of LH activity in LH3. These data provide the information needed to design knock-out studies for investigation of the function of glucosylgalactosyl hydroxylysyl residues of collagens in vivo.
Topoisomerase IIbeta binding protein 1 (TopBP1), previously shown to localise to sites of DNA damage and to stalled replication forks, has been implicated in DNA replication and in DNA damage response. In this work we showed that TopBP1 was localised in structures other than stalled replication forks. In late mitosis TopBP1 localises to centrosomes in a manner similar to other DNA damage response proteins such as BRCA1 and p53. Spindle checkpoint activation does not affect this centrosomal localisation. Moreover, in the testis, we detected high levels of TopBP1 associated with meiotic prophase chromosome cores and the X-Y pair. Together, these data suggest a direct role of TopBP1 during both mitosis and meiotic prophase I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.