Ultrasound elastography has been widely applied in clinical diagnosis. To produce high-quality elastograms, displacement estimation is important to generate fine displacement map from the original ratio-frequency signals. Traditional displacement estimation methods are based on the local information of signals pair, such as cross-correlation method, phase zero estimation. However, the tissue movement is nonlocal during realistic elasticity process due to the compression coming from the surface. Recently, regularized cost functions have been broadly used in ultrasound elastography. In this paper, we tested the using of analytic minimization of adaptive regularized cost function, a combination of different regularized cost functions, to correct the displacement estimation calculated by cross-correlation method directly or by lateral displacement guidance. We have demonstrated that the proposed method exhibit obvious advantages in terms of imaging quality with higher levels of elastographic signal-to-noise ratio and elastographic contrast-to-noise ratio in the simulation and phantom experiments respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.