Granites sampled from Garzê-Litang thrust, Longmen Shan thrust, Garzê and Litang strike-slip faults in the eastern Tibetan Plateau have been analyzed with apatite fission track thermochronological method in this study. The measured fission track apparent ages, combined with the simulated annealing modeling of the thermal history, have been used to reconstruct the thermal evolutionary histories of the samples and interpret the active history of the thrusts and faults in these areas. Thermal history modeling shows that earlier tectonic cooling occurred in the Garzê-Litang thrust in Miocene (~20-16 Ma) whereas the later cooling occurred mainly in the Longmen Shan thrust since ~5 Ma. Our study suggests that the margin of eastern Tibetan Plateau was extended by stages: through strike-slip faults deformations and related thrusts, the upper crust formed the Garzê-Litang margin in the Miocene epoch and then moved to the Longmen Shan margin since ~5 Ma. During this process, the deformations of different phases in the eastern Tibetan Plateau were absorbed by the thrusts within them and consequently the tectonic events of long-distance slip and extrusion up to hundreds of kilometers have not been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.