In this study, we propose a technique for diagnosing both type 1 and type 2 diabetes in a quick, noninvasive way by using equipment that is easy to transport. Diabetes mellitus is a chronic disease that affects public health globally. Although diabetes mellitus can be accurately diagnosed using conventional methods, these methods require the collection of data in a clinical setting and are unlikely to be feasible in areas with few medical resources. This technique combines an analysis of fundus photography of the physical and physiological features of the patient, namely, the tongue and the pulse, which are used in Traditional Chinese Medicine. A random forest algorithm was used to analyze the data, and the accuracy, precision, recall, and F1 scores for the correct classification of diabetes were 0.85, 0.89, 0.67, and 0.76, respectively. The proposed technique for diabetes diagnosis offers a new approach to the diagnosis of diabetes, in that it may be convenient in regions that lack medical resources, where the early detection of diabetes is difficult to achieve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.