By exploiting the thermal instability about the Ar-CO axis at high temperature, atropisomeric amides can be dynamically resolved to provide material with up to 96.5 % ee in 70-80 % overall yield from racemic starting material. The amides are coupled with a diamine resolving agent and equilibrated to single diastereoisomers. Hydrolysis returns enantiomerically enriched amide (see reaction scheme).
Tertiary aromatic amides bearing stereogenic centres ortho to the amide group may adopt two diastereoisomeric conformations which interconvert slowly on the NMR timescale at ambient temperature, and are therefore detectable by NMR. Certain classes of stereogenic centre--particularly sulfoxides, ephedrine-derived oxazolidines, and proline-derived imidazolidines--strongly bias the population of the two conformers. We propose a model, supported by molecular mechanics calculations, which rationalises the sense and magnitude of the conformational selectivity attained in terms of the steric and electronic properties of the controlling centre. The control over conformation may be exploited either by trapping the favoured conformer as an atropisomer, or by using it to relay information about the stereochemistry of the controlling centre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.