Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding to the collective displacement of atoms, is analyzed with the Lagrangian atomic stress method, of which the reliability is also analyzed. The stress wave velocity corresponds to the speed of sound in the material, which is not dependent on the thermal shock energy. The peak pressure of a normal stress wave increases with the increase of thermal shock energy. We analyze the temperature evolution of the thermal shock region according to the Fourier transformation. It can be seen that the "obvious" velocity of heat propagation is less than the velocity of the stress wave; further, that the thermo-elastic stress wave may contribute little to the transport of kinetic energy. The heat propagation can be described properly by the heat conduction equation. These results may be useful for understanding the process of the thermal shock of tungsten.
Molecular dynamics simulations are used to study cascades near the surface in hcp Zr. The influences of several factors, namely the primary knock-on atom (PKA) in different layers, angle of incidence, temperature and stress, on the number and type of defects are considered. Compared to bulk cascades, near-surface cascades show different characteristics in defect type and quantity when the PKA is in different layers. Low angle incidences create surface sputtering while the effects of high angle incidences are similar to those of bulk cascades. The effect of temperature is mainly focused on the number of sputtered atoms, with little influence on the total number of surviving defects. Stress helps to create more defects and the influence of compressive stress is more prominent than tensile stress.
The relative stability of π ππ and πππ solid solutions and amorphous phase with different compositions in the Cu-Al system is studied by molecular dynamics simulations with π-body potentials. For Cu1βπ₯Alπ₯ alloys, the calculations show that the π ππ solid solution has the lowest energies in the composition region with π₯ < 0.32 or π₯ > 0.72, while the πππ solid solution has the lowest energies in the central composition range, in agreement with the ball-milling experiments that a single πππ solid solution with 0.30 < π₯ < 0.70 is obtained. The evolution of structures in solid solutions and amorphous phase is studied by the coordination number (CN) and bond-length analysis so as to unveil the underlying physics. It is found that the energy sequence among three phases is determined by the competition in energy change originating from the bond length and CNs (or the number of bonds).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright Β© 2025 scite LLC. All rights reserved.
Made with π for researchers
Part of the Research Solutions Family.