Bone adaptation optimizes mass and structure, but the mechano-response is already reduced at maturation. Downregulation of sclerostin was believed to be a mandatory step in mechano-adaptation, but in young mice it was shown that load-induced formation can occur independent of sclerostin, a product of the Sost gene. We hypothesized that the bone formation and resorption response to loading is not affected by Sost deficiency, but is age-specific. Our findings indicate that the anabolic response to in vivo tibial loading was reduced at maturation in Sost Knockout (KO) and littermate control (LC) mice. Age affected all anabolic and catabolic parameters and altered Sost and Wnt target gene expression. While load-induced cortical resorption was similar between genotypes, loading-induced gains in mineralizing surface was enhanced in Sost KO compared to LC mice. Loading led to a downregulation in expression of the Wnt inhibitor Dkk1. Expression of Dkk1 was greater in both control and loaded limbs of Sost KO compared to LC mice suggesting a compensatory role in the absence of Sost. These data suggest physical activity could enhance bone mass concurrently with sclerostin-neutralizing antibodies, but treatment strategies should consider the influence of age on ultimate load-induced bone mass gains.
BackgroundThe understanding of the individual shape and mobility of the lumbar spine are key factors for the prevention and treatment of low back pain. The influence of age and sex on the total lumbar lordosis and the range of motion as well as on different lumbar sub-regions (lower, middle and upper lordosis) in asymptomatic subjects still merits discussion, since it is essential for patient-specific treatment and evidence-based distinction between painful degenerative pathologies and asymptomatic aging.Methods and FindingsA novel non-invasive measuring system was used to assess the total and local lumbar shape and its mobility of 323 asymptomatic volunteers (age: 20–75 yrs; BMI <26.0 kg/m2; males/females: 139/184). The lumbar lordosis for standing and the range of motion for maximal upper body flexion (RoF) and extension (RoE) were determined. The total lordosis was significantly reduced by approximately 20%, the RoF by 12% and the RoE by 31% in the oldest (>50 yrs) compared to the youngest age cohort (20–29 yrs). Locally, these decreases mostly occurred in the middle part of the lordosis and less towards the lumbo-sacral and thoraco-lumbar transitions. The sex only affected the RoE.ConclusionsDuring aging, the lower lumbar spine retains its lordosis and mobility, whereas the middle part flattens and becomes less mobile. These findings lay the ground for a better understanding of the incidence of level- and age-dependent spinal disorders, and may have important implications for the clinical long-term success of different surgical interventions.
Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (GorabPrx1) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the GorabPrx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that GorabPrx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared imaging (FTIRI) indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the GorabPrx1 tibiae (p<0.05), suggesting delayed mineralization. In vivo strain gauge measurement and finite element analysis showed ~two times higher tissue-level strains within the GorabPrx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that GorabPrx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the GorabPrx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO.
Sclerostin, a product of the gene, is a Wnt-inhibitor and thus negatively regulates bone accrual. Canonical Wnt/β-catenin signalling is also known to be activated in mechanotransduction. Sclerostin neutralizing antibodies are being tested in ongoing clinical trials to target osteoporosis and osteogenesis imperfecta but their interaction with mechanical stimuli on bone formation remains unclear. knockout (KO) mice were examined to gain insight into how long-term deficiency alters the local mechanical environment within the bone. This knowledge is crucial as the strain environment regulates bone adaptation. We characterized the bone geometry at the tibial midshaft of young and adult KO and age-matched littermate control (LC) mice using microcomputed tomography imaging. The cortical area and the minimal and maximal moment of inertia were higher in KO than in LC mice, whereas no difference was detected in either the anterior-posterior or medio-lateral bone curvature. Differences observed between age-matched genotypes were greater in adult mice. We analysed the local mechanical environment in the bone using finite-element models (FEMs), which showed that strains in the tibiae of KO mice are lower than in age-matched LC mice at the diaphyseal midshaft, a region commonly used to assess cortical bone formation and resorption. Our FEMs also suggested that tissue mineral density is only a minor contributor to the strain distribution in tibial cortical bone from KO mice compared to bone geometry. Furthermore, they indicated that although strain gauging experiments matched strains at the gauge site, strains along the tibial length were not comparable between age-matched KO and LC mice or between young and adult animals within the same genotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.