• Premise of the study: Tribe Cardueae (thistles) forms one of the largest tribes in the family Compositae (2400 species), with representatives in almost every continent. The greatest species richness of Cardueae occurs in the Mediterranean region where it forms an important element of its flora. New fossil evidence and a nearly resolved phylogeny of Cardueae are used here to reconstruct the spatiotemporal evolution of this group.• Methods: We performed maximum parsimony and Bayesian phylogenetic inference based on nuclear ribosomal DNA and chloroplast DNA markers. Divergence times and ancestral area reconstructions for main lineages were estimated using penalized likelihood and dispersal–vicariance analyses, respectively, and integrated over the posterior distribution of the phylogeny from the Bayesian Markov chain Monte Carlo analysis to accommodate uncertainty in phylogenetic relationships.• Key results: The phylogeny shows that subtribe Cardopatiinae is sister to the remaining subtribes, and subtribes Carlininae and Echinopsinae appear as consecutive sister‐clades to the Carduinae/Centaureinae. Tribe Cardueae is inferred to have originated around the Mid Eocene in West Asia, which is also the ancestral area of most subtribes within Cardueae. Diversification within each subtribe began during the Oligocene‐Miocene period.• Conclusions: Most diversification events within Cardueae are related to the continuous cycles of area connection and division between the Anatolian microplate and the western Mediterranean Basin during the Oligocene‐Miocene and with the uplift of the Himalayan range from the Miocene onward. From these two regions, thistles dispersed and colonized the rest of the continents (e.g., the New World, Africa, and Australia), most likely during the colder Pliocene‐Pleistocene period.
The leafy spurges, Euphorbia subg. Esula, make up one of four main lineages in Euphorbia. The subgenus comprises about 480 species, most of which are annual or perennial herbs, but with a small number of dendroid shrubs and nearly leafless, pencil–stemmed succulents as well. The subgenus constitutes the primary northern temperate radiation in Euphorbia. While the subgenus is most diverse from central Asia to the Mediterranean region, members of the group also occur in Africa, in the Indo–Pacific region, and in the New World. We have assembled the largest worldwide sampling of the group to date (273 spp.), representing most of the taxonomic and geographic breadth of the subgenus. We performed phylogenetic analyses of sequence data from the nuclear ribosomal ITS and plastid ndhF regions. Our individual and combined analyses produced well–resolved phylogenies that confirm many of the previously recognized clades and also establish a number of novel groupings and placements of previously enigmatic species. Euphorbia subg. Esula has a clear Eurasian center of diversity, and we provide evidence for four independent arrivals to the New World and three separate colonizations of tropical and southern Africa. One of the latter groups further extends to Madagascar and New Zealand, and to more isolated islands such as Réunion and Samoa. Our results confirm that the dendroid shrub and stem–succulent growth forms are derived conditions in E. subg. Esula. Stem–succulents arose twice in the subgenus and dendroid shrubs three times. Based on the molecular phylogeny, we propose a new classification for E. subg. Esula that recognizes 21 sections (four of them newly described and two elevated from subsectional rank), and we place over 95% of the accepted species in the subgenus into this new classification.
a b s t r a c tSpotted knapweed (Centaurea stoebe) occurs from Western Asia to Western Europe both as diploid and tetraploid cytotypes, predominantly in single-cytotype populations with higher frequency of diploid populations. Interestingly, only tetraploids have been recorded so far from its introduced range in North America where they became highly invasive.We performed phylogenetic and network analyses of more than 40 accessions of the C. stoebe and C. paniculata groups and other related taxa using cloned internal transcribed spacer (ITS) and sequences of the chloroplast trnT-trnL and atpBrbcL regions to (i) assess the evolutionary origin of tetraploid C. stoebe s.l., and (ii) uncover the phylogeny of the C. stoebe group. Both issues have not been studied so far and thus remained controversial.Cloned ITS sequences showed the presence of two slightly divergent ribotypes occurring in tetraploid cytotype, while only one major ribotype was present in diploid C. stoebe s.str. This pattern suggests an allopolyploid origin of tetraploids with contribution of the diploid C. stoebe s.str. genome. Although we were not able to detect the second parental taxon, we hypothesize that hybridization might have triggered important changes in morphology and life history traits, which in turn may explain the colonization success of the tetraploid taxon. Bayesian relaxed clock estimations indicate a relatively recent -Pleistocene origin of the tetraploid C. stoebe s.l. Furthermore, our analyses showed a deep split between the C. paniculata and C. stoebe groups, and a young diversification of the taxa within the C. stoebe group. In contrast to nrDNA analyses, the observed pattern based on two cpDNA regions was inconclusive with respect to the origin and phylogeny of the studied taxa, most likely due to shared ancient polymorphism and frequent homoplasies.
Euphorbia subg. Esula (Euphorbiaceae) has recently been shown, using molecular analyses, to contain a clade with a disjunct distribution in Macaronesia, South Africa and the Eritreo‐Arabian region, and being primarily made up of members of sect. Tithymalus subsect. Pachycladae and sect. Tirucalli. To delimitate this disjoint group, we carried out phylogenetic analyses of the internal transcribed spacer (nrITS) using a broad sampling, with emphasis on subg. Esula. Subsequently, we carried out phylogenetic analyses focused on this clade using nuclear (ITS, ETS) and chloroplast (trnL‐trnF, psbA‐trnH, ycf3‐trnS, trnG, atpB‐rbcL, trnK‐matK, trnT‐trnL) markers, with the aim of resolving the phylogenetic relationships within the group and reconstructing its biogeographic history. Our results showed that sect. Tithymalus subsect. Pachycladae and sect. Tirucalli are polyphyletic. Section Aphyllis is recircumscribed to comprise the Pachycladae core clade and part of sect. Tirucalli. Low resolution within sect. Aphyllis and incongruences between nuclear and chloroplast phylogenies may be due to hybridization. Section Aphyllis should have originated in the Mediterranean area; its disjunct distribution is probably due to vicariance, resulting from fragmentation of a wider distribution area in North Africa caused by the aridification of the climate during the late Miocene‐Pliocene.
The natural status of the genus Plectocephalus is confirmed and several nomenclatural combinations are proposed. New evidence contributes to the debate concerning problems posed by the use of ITS in the phylogenetic reconstruction of groups that differ in terms of their life cycles. Dispersal from Caucasus and Anatolia along the Siberian route and then across the Bering Land Bridge follows a route previously proposed for other taxonomic groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.