Abstract-Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed to work over night. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this paper, an automated classification algorithm is presented which processes short duration epochs of the electrocardiogram (ECG) data. The automated classification algorithm is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high degree of accuracy, approximately 96.5%. Moreover, the system we developed can be used as a basis for future development of a tool for OSA screening.
Abstract-Sleep apnea is the instance when one either has pauses of breathing in their sleep, or has very low breath while asleep. This pause in breathing can range in frequency and duration. Obstructive sleep apnea (OSA) is the common form of sleep apnea, which is currently tested through polysomnography (PSG) at sleep labs. PSG is both expensive and inconvenient as an expert human observer is required to work over night. New sleep apnea classification techniques are nowadays being developed by bioengineers for most comfortable and timely detection. This paper focuses on an automated classification algorithm which processes short duration epochs of the electrocardiogram (ECG) data. The presented classification technique is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high accuracy of 96.5% or higher. Furthermore, the proposed system can be used as a basis for future development of a tool for OSA screening.
Abstract-Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. These episodes last 10 seconds or more and cause oxygen levels in the blood to drop. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is required. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this study, we develop and validate a neural network (NN) using SpO2 measurements obtained from pulse oximetry to predict OSA. The results show that the NN is useful as a predictive tool for OSA with a high performance and improved accuracy, approximately 93.3%, which is better than reported techniques in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.