To accelerate the discovery of novel small molecule central nervous system (CNS) positron emission tomography (PET) ligands, we aimed to define a property space that would facilitate ligand design and prioritization, thereby providing a higher probability of success for novel PET ligand development. Toward this end, we built a database consisting of 62 PET ligands that have successfully reached the clinic and 15 radioligands that failed in late-stage development as negative controls. A systematic analysis of these ligands identified a set of preferred parameters for physicochemical properties, brain permeability, and nonspecific binding (NSB). These preferred parameters have subsequently been applied to several programs and have led to the successful development of novel PET ligands with reduced resources and timelines. This strategy is illustrated here by the discovery of the novel phosphodiesterase 2A (PDE2A) PET ligand 4-(3-[(18)F]fluoroazetidin-1-yl)-7-methyl-5-{1-methyl-5-[4-(trifluoromethyl)phenyl]-1H-pyrazol-4-yl}imidazo[5,1-f][1,2,4]triazine, [(18)F]PF-05270430 (5).
PF-06372865 has a unique clinical pharmacology profile and a highly predictive translational data package from preclinical species to the clinical setting.
Using positron emission tomography imaging, we determined the hepatic concentrations and hepatobiliary transport of [11C]rosuvastatin (RSV; i.v. injection) in the absence (n = 6) and presence (n = 4 of 6) of cyclosporin A (CsA; i.v. infusion) following a therapeutic dose of unlabeled RSV (5 mg, p.o.) in healthy human volunteers. The sinusoidal uptake, sinusoidal efflux, and biliary efflux clearance (CL; mL/minute) of [11C]RSV, estimated through compartment modeling were 1,205.6 ± 384.8, 16.2 ± 11.2, and 5.1 ± 1.8, respectively (n = 6). CsA (blood concentration: 2.77 ± 0.24 μM), an organic‐anion‐transporting polypeptide, Na+‐taurocholate cotransporting polypeptide, and breast cancer resistance protein inhibitor increased [11C]RSV systemic blood exposure (45%; P < 0.05), reduced its biliary efflux CL (52%; P < 0.05) and hepatic uptake (25%; P > 0.05) but did not affect its distribution into the kidneys. CsA increased plasma concentrations of coproporphyrin I and III and total bilirubin by 297 ± 69%, 384 ± 102%, and 81 ± 39%, respectively (P < 0.05). These data can be used in the future to verify predictions of hepatic concentrations and hepatobiliary transport of RSV.
This paper presents a novel method of reducing x-ray CT high-density artefacts generated by metal objects when abundant bone structures are present in the region of interest. This method has an advantage over previously proposed methods since it heavily suppresses the metal artefacts without introducing extra bone artefacts. The method of suppression requires that bone pixels are isolated and segmented by thresholding. Then artificial CT numbers are assigned to the bone pixels so that their projection profiles are smooth and thus can be properly simulated by a polynomial interpolation. The projection profile of the metal object is then removed to fully suppress the artefacts. The resulting processed profile is fed to a reconstruction routine and the previously preserved bone pixels added back. The new method utilizes two important features of the CT image with metal artefacts: (a) metal and bone pixels are not severely affected by the high-density artefacts and (b) the high-density artefacts can be located in specific projection channels in the profile domain, although they are spread out in the image domain. This suppression method solves the problem of CT image artefacts arising from metal objects in the body. It has the potential to greatly improve diagnostic CT imaging in the presence of these objects and treatment planning that utilizes CT for patients with metal applicators (e.g., brachytherapy for cervix cancer and prostate cryotherapy).
A novel series of pyrazolopyrazines is herein disclosed as mGluR5 negative allosteric modulators (NAMs). Starting from a high-throughput screen (HTS) hit (1), a systematic structure-activity relationship (SAR) study was conducted with a specific focus on balancing pharmacological potency with physicochemical and pharmacokinetic (PK) properties. This effort led to the discovery of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo[3,4-b]pyrazine (PF470, 14) as a highly potent, selective, and orally bioavailable mGluR5 NAM. Compound 14 demonstrated robust efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rendered Parkinsonian nonhuman primate model of l-DOPA-induced dyskinesia (PD-LID). However, the progression of 14 to the clinic was terminated because of a potentially mechanism-mediated finding consistent with a delayed-type immune-mediated type IV hypersensitivity in a 90-day NHP regulatory toxicology study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.