Cryptotanshinone (CPT), a diterpene quinone isolated from Salvia miltiorrhiza, is recently reported to have obvious anticancer activities against diverse cancer cells. However, the effect and regulatory mechanism of CPT remain unclear in human chronic myeloid leukemia (CML) cells. In this study, we investigated the antiproliferative activity of CPT on the multidrug resistant CML cells K562/ADM. Our results demonstrated that CPT decreased the cell viability of K562/ADM cells by inducing cell cycle arrest and apoptosis through suppressing the expression of cyclin D1 and Bcl-2. Further studies indicated that CPT mainly functions at post-transcriptional levels, suggesting the involvement of eukaryotic initiation factor 4E (eIF4E). CPT significantly reduced the expression and activity of eIF4E in K562/ADM cells. Overexpression of eIF4E obvious conferred resistance to the CPT antiproliferation and proapoptotic activity as well as the cyclin D1 and Bcl-2 expressions. Knockdown of eIF4E significantly reduced the inhibitory effect of CPT in K562/ADM, confirming the participation of eIF4E during CPT function process. More importantly, the relative inhibitory efficiency of CPT positively correlated with the reductions on eIF4E in primary CML specimens. These results demonstrated that CPT played antitumor roles in K562/ADM cells by inhibiting the eIF4E regulatory system. Our results provide a novel anticancer mechanism of CPT in human CML cells.
Normal human diploid fibroblasts have limited life span in culture and undergo replicative senescence after 50–60 population doublings. On the contrary, cancer cells typically divide indefinitely and are immortal. Expression of SV40 large T and small t antigens in human fibroblasts transiently extends their life span by 20–30 population doublings and facilitates immortalization. We have identified a rearrangement in chromosome 6 shared by SV40-transformed human fibroblasts. Rearrangements involving chromosome 6 are among the most frequent in human carcinogenesis. In this paper, we extend analysis of the 6q26–q27 region, a putative site for a growth suppressor gene designated SEN6 involved in immortalization of SV40-transformed cells. Detailed molecular characterization of the rearranged chromosomes (6q*, normal appearing; and 6qt, translocated) in the SV40-immortalized cell line HALneo by isolating each of these 2 chromosomes in mouse/HAL somatic cell hybrids is presented. Analysis of these mouse/HAL somatic cell hybrids with polymorphic and nonpolymorphic markers revealed that the 6q* has undergone a chromosomal break in the MLLT4 gene (alias AF6). This result in conjunction with previous published observations leads us to conclude that SEN6 lies between MLLT4 and TBP at chromosomal region 6q27. Examination of different genes (MLLT4, DLL1, FAM120B, PHF10) located within this interval that are expressed in HS74 normal fibroblast cells reveals that overexpression of epitope-tagged truncated PHF10 cDNAs resulted in reduced cell proliferation in multiple cell lines. Paradoxically, down-regulation of PHF10 by RNAi also resulted in loss of cell proliferation in normal fibroblast cells, indicating PHF10 function is required for cell growth. Taken together, these observations suggest that decreased cell proliferation with epitope-tagged truncated PHF10 proteins may be due to dominant negative effects or due to unregulated expression of these mutant proteins. Hence we conclude that PHF10 is not SEN6 but is required for cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.