3D bioprinting offers the opportunity to automate the process of tissue engineering, which combines biomaterial scaffolds and cells to generate substitutes for diseased or damaged tissues. These bioprinting methods construct tissue replacements by positioning cells encapsulated in bioinks into specific locations in the resulting constructs. Human induced pluripotent stem cells (hiPSCs) serve as an important tool when engineering neural tissues. These cells can be expanded indefinitely and differentiated into the cell types found in the central nervous systems, including neurons. One common method for differentiating hiPSCs into neural tissue requires the formation of aggregates inside of defined diameter microwells cultured in chemically defined media. However, 3D bioprinting of such hiPSC-derived aggregates has not been previously reported in the literature, as it requires the development of specialized bioinks for supporting cell survival and differentiation into mature neural phenotypes. Here we detail methods including preparing base material components of the bioink, producing the bioink, and the steps involved in printing 3D neural tissues derived from hiPSC-derived neural aggregates using Aspect Biosystems’ novel RX1 printer and their lab-on-a-printer (LOP) technology.
A.K. and M.A. performed the experiments repeatedly and collected and analyzed the data. L.A. and S.W. prepared and provided the fibrinogen solutions in varying concentrations and provided technical inputs. S.A.K., M.A., and B.J. wrote the manuscript and prepared all the figures. S.C.A. and L.S. performed rheology and analyzed the resultant data. V.T. and M.C. facilitated the CM and CF cultures, cell coupling experiments, and their microscopic imaging along with images and writing of relevant sections in the manuscript. J.A. and Y.I. provided the furfuryl-gelatin and performed cytotoxicity assay for Rose Bengal. All authors reviewed the manuscript and provided their consent for publication. The manuscript was written through individual contributions of all authors. All authors have given approval to the final version of the manuscript.
Most neurological diseases and disorders lack true cures, including spinal cord injury (SCI). Accordingly, current treatments only alleviate the symptoms of these neurological diseases and disorders. Engineered neural tissues derived from human induced pluripotent stem cells (hiPSCs) can serve as powerful tools to identify drug targets for treating such diseases and disorders. In this work, we demonstrate how hiPSC-derived neural progenitor cells (NPCs) can be bioprinted into defined structures using Aspect Biosystems’ novel RX1 bioprinter in combination with our unique fibrin-based bioink in rapid fashion as it takes under 5 min to print four tissues. This printing process preserves high levels of cell viability (>81%) and their differentiation capacity in comparison to less sophisticated bioprinting methods. These bioprinted neural tissues expressed the neuronal marker, βT-III (45 ± 20.9%), after 15 days of culture and markers associated with spinal cord (SC) motor neurons (MNs), such as Olig2 (68.8 ± 6.9%), and HB9 (99.6 ± 0.4%) as indicated by flow cytometry. The bioprinted neural tissues expressed the mature MN marker, ChaT, after 30 days of culture as indicated by immunocytochemistry. In conclusion, we have presented a novel method for high throughput production of mature hiPSC-derived neural tissues with defined structures that resemble those found in the SC.
Stem cells offer tremendous promise for regenerative medicine as they can become a variety of cell types. They also continuously proliferate, providing a renewable source of cells. Recently, it has been found that 3D printing constructs using stem cells, can generate models representing healthy or diseased tissues, as well as substitutes for diseased and damaged tissues. Here, we review the current state of the field of 3D printing stem cell derived tissues. First, we cover 3D printing technologies and discuss the different types of stem cells used for tissue engineering applications. We then detail the properties required for the bioinks used when printing viable tissues from stem cells. We give relevant examples of such bioprinted tissues, including adipose tissue, blood vessels, bone, cardiac tissue, cartilage, heart valves, liver, muscle, neural tissue, and pancreas. Finally, we provide future directions for improving the current technologies, along with areas of focus for future work to translate these exciting technologies into clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.