A range of binary, ternary (CFS), and quaternary (CZTS) metal sulfide materials have been successfully deposited onto the glass substrates by air-spray deposition of metal diethyldithiocarbamate molecular precursors followed by pyrolysis (18 examples). The as-deposited materials were characterized by powder X-ray diffraction (p-XRD), Raman spectroscopy, secondary electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy, which in all cases showed that the materials were polycrystalline with the expected elemental stoichiometry. In the case of the higher sulfides, EDX spectroscopy mapping demonstrated the spatial homogeneity of the elemental distributions at the microscale. By using this simple and inexpensive method, we could potentially fabricate thin films of any given main group or transition metal chalcogenide material over large areas, theoretically on substrates with complex topologies.
There has been an increasing demand for rapid and sensitive techniques for the identification and quantification of pharmaceutical compounds in human biofluids during the past few decades, and surface-enhanced Raman scattering (SERS) is one of a number of physicochemical techniques with the potential to meet these demands. In this study we have developed a SERS-based analytical approach for the assessment of human biofluids in combination with chemometrics. This novel approach has enabled the detection and quantification of the β-blocker propranolol spiked into human serum, plasma, and urine at physiologically relevant concentrations. A range of multivariate statistical analysis techniques, including principal component analysis (PCA), principal component-discriminant function analysis (PC-DFA) and partial least-squares regression (PLSR) were employed to investigate the relationship between the full SERS spectral data and the level of propranolol. The SERS spectra when combined with PCA and PC-DFA demonstrated clear differentiation of neat biofluids and biofluids spiked with varying concentrations of propranolol ranging from 0 to 120 μM, and clear trends in ordination scores space could be correlated with the level of propranolol. Since PCA and PC-DFA are categorical classifiers, PLSR modeling was subsequently used to provide accurate propranolol quantification within all biofluids with high prediction accuracy (expressed as root-mean-square error of predictions) of 0.58, 9.68, and 1.69 for serum, plasma, and urine respectively, and these models also had excellent linearity for the training and test sets between 0 and 120 μM. The limit of detection as calculated from the area under the naphthalene ring vibration from propranolol was 133.1 ng/mL (0.45 μM), 156.8 ng/mL (0.53 μM), and 168.6 ng/mL (0.57 μM) for serum, plasma, and urine, respectively. This result shows a consistent signal irrespective of biofluid, and all are well within the expected physiological level of this drug during therapy. The results of this study demonstrate the potential of SERS application as a diagnostic screening method, following further validation and optimization to improve detection of pharmaceutical compounds and quantification in human biofluids, which may open up new exciting opportunities for future use in various biomedical and forensic applications.
Iron(III) xanthate single-source precursors [Fe(S 2 COR) 3 ] (R ¼ methyl, ethyl, isopropyl and 1-propyl) were used to deposit iron sulfide thin films and nanostructures by two simple, efficient and low-cost methods (spin coating and solid state deposition). The single-crystal X-ray structures of the iron(III) n-propyl xanthate and iron(III) iso-propyl xanthate have been determined. Thermogravimetric analysis (TGA) studies of the complexes shows that decomposition of the complexes produces iron sulfide, pyrite or trolite. The crystallinity of iron sulfide thin films and powder samples was studied using X-ray diffraction (XRD), and their morphology was studied by scanning electron microscopy (SEM).
A series of novel alkylxanthato iron(III) precursors [Fe(S2COR)3] (R = n-butyl, (1); 2-butyl,(2); 2-methoxyethyl, (3); and 2-ethoxyethyl (4)) have been synthesised and their single crystal X-ray structures have been studied. All as-synthesised complexes were used as singlesource precursors for the deposition of iron sulfide thin films as well as nanostructures using spin coating technique and solventless thermolysis respectively. Cubic pyrite was obtained using n-butyl xanthato iron(III) and 2-butyl xanthato iron(III) complexes in the temperature range of 200 to 300°C. Structural and morphological investigations using XRD and SEM have been performed to ascertain the crystallinity and morphology of as-prepared thin films and nanostructures. The elemental composition was determined using energy dispersive Xray (EDX) spectroscopy. The optical band gaps of pyrite thin films produced by these methods were direct with estimated values in the range 1.6 to 2.3 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.