Manufacturers today compete to offer not only products, but products accompanied by services, which are referred to as product-service systems (PSSs). PSS mass customization is defined as the production of products and services to meet the needs of individual customers with near-mass-production efficiency. In the context of the PSS mass customization environment, customers are overwhelmed by a plethora of previously customized PSS variants. As a result, finding a PSS variant that is precisely aligned with the customer’s needs is a cognitive task that customers will be unable to manage effectively. In this paper, we propose a hybrid knowledge-based recommender system that assists customers in selecting previously customized PSS variants from a wide range of available ones. The recommender system (RS) utilizes ontologies for capturing customer requirements, as well as product-service and production-related knowledge. The RS follows a hybrid recommendation approach, in which the problem of selecting previously customized PSS variants is encoded as a constraint satisfaction problem (CSP), to filter out PSS variants that do not satisfy customer needs, and then uses a weighted utility function to rank the remaining PSS variants. Finally, the RS offers a list of ranked PSS variants that can be scrutinized by the customer. In this study, the proposed recommendation approach was applied to a real-life large-scale case study in the domain of laser machines. To ensure the applicability of the proposed RS, a web-based prototype system has been developed, realizing all the modules of the proposed RS.
Nowadays, manufacturers are shifting from a traditional product-centric business paradigm to a service-centric one by offering products that are accompanied by services, which is known as Product-Service Systems (PSSs). PSS customization entails configuring products with varying degrees of differentiation to meet the needs of various customers. This is combined with service customization, in which configured products are expanded by customers to include smart IoT devices (e.g., sensors) to improve product usage and facilitate the transition to smart connected products. The concept of PSS customization is gaining significant interest; however, there are still numerous challenges that must be addressed when designing and offering customized PSSs, such as choosing the optimum types of sensors to install on products and their adequate locations during the service customization process. In this paper, we propose a data warehouse-based recommender system that collects and analyzes large volumes of product usage data from similar products to the product that the customer needs to customize by adding IoT smart devices. The analysis of these data helps in identifying the most critical parts with the highest number of incidents and the causes of those incidents. As a result, sensor types are determined and recommended to the customer based on the causes of these incidents. The utility and applicability of the proposed RS have been demonstrated through its application in a case study that considers the rotary spindle units of a CNC milling machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.