Tubulin and heat shock protein 27 (HSP27) are up-regulated in cancer cells, and play a critical role in cell division, and proliferation. Therefore, they are targets for discovery of anticancer therapy. The objective of this study is to design, characterize, and biologically evaluate the nimesulide analogues to combat female cancer such as ovarian cancer, and breast cancer. Herein, the nimesulide analogues are designed to target both tubulin and HSP27 functions. Ovarian cancer (SKOV3) and breast cancer (SKBR3) cell lines were used as surrogate models to test the nimesulide analogs biological activities using MTT assay. In the present study, four nimesulide analogues were designed, synthesized and the chemical structures were with the biological evaluation were studied. The synthesized agents were characterized by 1H-NMR, 13C-NMR, the molecular weight was confirmed using GC-MS technique, and melting point. Besides, the agent L4 structure was confirmed using X-ray crystallographic analysis. The present data revealed that nimesulide analogs have potent anticancer activity against SKOV3and SKBR3 cell lines. The IC50 values for both SKOV3 and SKBR3 cell lines treated with the agents showed a potent cell growth inhibition range of 0.23-2.02 µM and 0.50-3.73 µM respectively. In conclusion, the designed nimesulide analogues can target both tubulins, and HSP27 concurrently, and they are promising agents as future chemotherapy female cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.