Neonatal asphyxia may lead to cardiac and renal complications perhaps mediated by oxygen free radicals. Using a model of neonatal hypoxia-reoxygenation, we tested the hypothesis that N-acetylcysteine (NAC) would improve cardiac function and renal blood flow. Eighteen piglets (aged 1-4 days old, weighing 1.4-2.2 kg) were anesthetized and acutely instrumented for continuous monitoring of pulmonary and renal artery flow (cardiac index [CI] and renal artery flow index [RAFI], respectively) and mean blood pressure. Alveolar hypoxia was induced for 2 h, followed by resuscitation with 100% oxygen for 1 h and 21% oxygen for 3 h. Animals were randomized to sham-operated, hypoxic control, and NAC treatment (i.v. bolus of 150 mg/kg given at 10 min of reoxygenation followed by 100 mg/kg per h infusion) groups. Myocardial and renal tissue glutathione content and lipid hydroperoxide levels were assayed, and histology was examined. After 2 h of hypoxia, all animals were acidotic (pH 6.96 +/- 0.04) and in cardiogenic shock with depressed renal blood flow. Upon reoxygenation, CI and RAFI increased but gradually deteriorated later. The NAC treatment prevented the decreased CI, stroke volume, mean blood pressure, systemic oxygen delivery, RAFI, and renal oxygen delivery at 2 to 4 h of reoxygenation observed in hypoxic controls (versus shams, all P< 0.05). The myocardial and renal tissue glutathione content was significantly higher in the NAC treatment group (versus controls). The CI and RAFI at 4 h of reoxygenation correlated with the tissue glutathione redox ratio (r = 0.5 and 0.6, respectively, P < 0.05). There were no significant differences in heart rate, pulmonary artery pressure, systemic oxygen uptake, and tissue lipid hydroperoxide levels between groups. No histologic injury was found in the heart or kidney. In this porcine model of neonatal hypoxia and 100% reoxygenation, NAC improved cardiac function and renal perfusion, with improved tissue glutathione content.
Shock and tissue hypoperfusion are common after asphyxia. We compared systemic and regional hemodynamic effects of epinephrine and dopamine in the treatment of shock and hypotension in asphyxiated newborn piglets resuscitated with 100% oxygen. Twenty-four piglets (1-3 days old; weight, 1.4-2.6 kg) were acutely instrumented to measure cardiac index (CI), carotid, mesenteric and renal arterial blood flows, and mean systemic (SAPs) and pulmonary arterial pressures (PAPs). Piglets had normocapnic alveolar hypoxia (F(IO2)=0.08-0.10) for 50 min and reoxygenated with F(IO2)=1.0 for 1 h then F(IO2)=0.21 for 3.5 h. After 2 h reoxygenation, either dopamine (2 microg kg(-1) min(-1)) or epinephrine (0.2 microg kg(-1) min(-1)) was given for 30 min in a blinded randomized manner, which was then increased to maintain SAP (within 10% of baseline, pressure-driven dose) for 2 h. Hypoxia caused hypotension (SAP, 44%+/-3% of baseline), cardiogenic shock (CI, 41%+/-4%), and metabolic acidosis (mean pH, 7.04-7.09). Upon reoxygenation, hemodynamic parameters immediately recovered but gradually deteriorated during 2 h with SAP at 45+/-1 mmHg, CI at 74+/-9% of baseline, and pH 7.32+/-0.03. Low doses of either drug had no significant systemic and renal hemodynamic response. Epinephrine (0.3-1.5 microg kg(-1) min(-1)) for 2 h increased SAP and CI (with higher stroke volume) and decreased pulmonary vascular resistance (with reduced PAP-SAP ratio), whereas the responses with dopamine (10-25 microg kg(-1) min(-1)) were modest. Low-dose epinephrine improved mesenteric and carotid arterial flows, whereas the pressure-driven doses of epinephrine and dopamine increased carotid and mesenteric arterial flows, respectively. To treat shock in asphyxiated newborn piglets resuscitated with 100% oxygen, epinephrine exhibits an inotropic action compared with dopamine, whereas both catecholamines can increase carotid and mesenteric perfusion.
In hypoxic piglets, 18%, 21% and 100% reoxygenation caused similar systemic and renal hemodynamic and functional recovery. The indicators of oxidative stress and HR injury in myocardial and renal tissues suggest that the reoxygenation with 100% oxygen appears sub-optimal and the use of 18% oxygen offers no further benefit, when compared with 21% oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.